
Chapter 4

Probability

4.1 Random Variable

4.1.1 Describing random change

While motion in the realm of macroscopic bodies is largely deterministic, in the realm of
microscopic motion, stochasticity is the rule. A prominent classical example is provided by
motion of colloids in a viscous fluid. A large stone drops in such a fluid falls with a uniform
(terminal) velocity set by the balance of the force of gravity and fluid friction. A micron-sized
particle in the fluid, however, if observed with a microscope, performs a jittery motion that
only on average moves in the direction of gravity. The Scottish botanist, Robert Brown, first
discussed these fluctuations in 1827. To discuss and analyze such Brownian motion a new
mathematical perspective is needed, based on the concept of probability, which is the topic
of the next part of this material.

The simplest example of a random variable is a coin toss that can come up head or
tails. More generally, a random variable X may have a set of possible outcomes S ∈
{x1, x2, · · · , xn}, e.g. n = 6 for outcomes of throwing a dice. To various outcomes of the
random variable, we then assign probabilities, which must satisfy the following conditions:

• Positivity: pi ≥ 0, i.e. all probabilities must be real and non-negative.

• Additivity: Probabilities of independent outcomes is additive, e.g. the probability of
an even number in the throw of a dice is the sum of probabilities for obtaining 2, 4,
and 6.

• Normalization: p(S) = ∞, i.e. the random variable must have take one of the possible
set of outcomes.

In principle, there are two approaches to assigning probabilities:

• Objective probabilities are obtained experimentally from the relative frequency of the
occurrence of an outcome in many tests of the random variable. If the random process
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is repeated N times, and the event A occurs NA times, then

p(A) = lim
N→∞

NA

N
.

For example, a series of N = 100, 200, 300 throws of a dice may result in N1 =
19, 30, 48 occurrences of 1. The ratios .19, .15, .16 provide an increasingly more
reliable estimate of the probability pdice({1}).

• Subjective probabilities provide a theoretical estimate based on the uncertainties related
to lack of precise knowledge of outcomes. For example, the assessment pdice({1}) = 1/6,
is based on the knowledge that there are six possible outcomes to a dice throw, and that
in the absence of any prior reason to believe that the dice is biased, all six are equally
likely. The consequences of such subjective assignments of probability have to be
checked against measurements, and they may need to be modified as more information
about the outcomes becomes available.

4.1.2 Moments and cumulants

Quite generally, the expectation value of any function F (X) of the random variable X with
outcomes {xi} is given by

〈F (X)〉 =
∑

i

piF (xi) . (4.1.1)

• Of particular relevance are the mean or average of X , obtained as

〈X〉 =
∑

i

pixi . (4.1.2)

Similarly, higher moments of the random variable are expectation values for powers of
the random variable; the !th moment given by

〈X!〉 =
∑

i

pix
!
i . (4.1.3)

• A quite useful method for obtaining moments of a probability distribution function is
to employ a so called moment generating function, which is

G(λ) =
∞
∑

!=0

λ!

!!
〈X!〉 = 〈eλX〉 . (4.1.4)

Moments of the random variable can then be generated as terms of the coefficients of
the Taylor expansion of G(λ) around the origin.
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• Another useful quantity is the cumulant generating function which is the logarithm
of the moment characteristic function. Its expansion around the origin generates the
cumulants of the random variable, defined through

lnG(λ) =
∞
∑

!=1

λ!

!!
〈X!〉c . (4.1.5)

• The first four cumulants are called the mean, variance, skewness, and curtosis (or
kurtosis) of the random variable respectively, and are obtained from the moments as

〈X〉c = 〈X〉 ,
〈

X2
〉

c
=
〈

X2
〉

− 〈X〉2 ,
〈

X3
〉

c
=
〈

X3
〉

− 3
〈

X2
〉

〈X〉+ 2 〈X〉3 ,
〈

X4
〉

c
=
〈

X4
〉

− 4
〈

X3
〉

〈X〉 − 3
〈

X2
〉2

+ 12
〈

X2
〉

〈X〉2 − 6 〈X〉4 . (4.1.6)

• An important theorem allows easy computation of moments in terms of the cumu-
lants: Represent the nth cumulant graphically as a connected cluster of n points. The
mth moment is then obtained by summing all possible subdivisions of m points into
groupings of smaller (connected or disconnected) clusters. The contribution of each
subdivision to the sum is the product of the connected cumulants that it represents.
Using this result the first four moments are computed by adding configurations as

〈X〉 = 〈X〉c ,
〈

X2
〉

=
〈

X2
〉

c
+ 〈X〉2c ,

〈

X3
〉

=
〈

X3
〉

c
+ 3

〈

X2
〉

c
〈X〉c + 〈X〉3c ,

〈

X4
〉

=
〈

X4
〉

c
+ 4

〈

X3
〉

c
〈X〉c + 3

〈

X2
〉2

c
+ 6

〈

X2
〉

c
〈X〉2c + 〈X〉4c . (4.1.7)

4.1.3 Bionomial distribution

Consider a random variable with two outcomes A and B (e.g. a coin toss) of relative
probabilities pA and pB = 1 − pA. The probability that in N trials the event A occurs
exactly NA times (e.g. 5 heads in 12 coin tosses), is given by the binomial distribution

pN(NA) =

(

N !

NA!(N −NA)!

)

pNA

A pN−NA

B . (4.1.8)

The prefactor is just the coefficient obtained in the binomial expansion of (pA + pB)N , and
gives the number of possible orderings of NA events A and NB = N −NA events B.

The generating function for the binomial distribution is

GN(λ) =
〈

eλNA
〉

=
N
∑

NA=0

N !

NA!(N −NA)!
pNA

A pN−NA

B eλNA =
(

pAe
λ + pB

)N
. (4.1.9)

101



The resulting cumulant generating function is

lnGN(λ) = N ln
(

pAe
−ik + pB

)

= N lnG1(λ) , (4.1.10)

where lnG1(λ) is the cumulant generating function for a single step. Hence, the cumulants
after N steps are simply N times the cumulants in a single step. In each step, the allowed
values of NA are 0 and 1 with respective probabilities pB and pA, leading to

〈

N !
A

〉

= pA, for
all !. After N trials the first two cumulants are

〈NA〉c = NpA ,
〈

N2
A

〉

c
= N

(

pA − p2A
)

= NpApB . (4.1.11)

A measure of fluctuations around the mean is provided by the standard deviation, which is
the square root of the variance. While the mean of the binomial distribution scales as N , its
standard deviation only grows as

√
N . Hence, the relative uncertainty becomes smaller for

large N .
The binomial distribution is straightforwardly generalized to a multinomial distribution,

when the several outcomes {A,B, · · · ,M} occur with probabilities {pA, pB, · · · , pM}. The
probability of finding outcomes {NA, NB, · · · , NM} in a total of N = NA + NB · · · + NM

trials is

pN ({NA, NB, · · · , NM}) =
N !

NA!NB! · · ·NM !
pNA
A pNB

B · · · pNM
M . (4.1.12)

4.1.4 Poisson distribution

The classical example of a Poisson process is radioactive decay. Observing a piece of ra-
dioactive material over a time interval T shows that:

• The probability of one and only one event (decay) in the interval [t, t+dt] is proportional
to dt as dt → 0,

• The probabilities of events at different intervals are independent of each other.

The probability of observing exactly M decays in the interval T is given by the Poisson
distribution. It is obtained as a limit of the binomial distribution by subdividing the interval
into N = T/dt ) 1 segments of size dt. In each segment, an event occurs with probability
p = αdt, and there is no event with probability q = 1−αdt. As the probability of more than
one event in dt is too small to consider, the process is equivalent to a binomial one. Using
Eq. (4.1.10) the generating function for this process is obtained as

G(λ) =
(

peλ + q
)n

= lim
dt→0

[

1 + αdt
(

eλ − 1
)]T/dt

= exp
[

α(eλ − 1)T
]

. (4.1.13)

The cumulants of the distribution are obtained from the expansion

lnG(λ) = αT (eλ − 1) = αT
∞
∑

n=1

(λ)n

n!
, =⇒ 〈Mn〉c = αT . (4.1.14)
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All cumulants have the same value, and the moments are obtained as

〈M〉 = (αT ),
〈

M2
〉

= (αT )2 + (αT ),
〈

M3
〉

= (αT )3 + 3(αT )2 + (αT ). (4.1.15)

Using a similar limiting procedure on the binomial distribution leads to

pαT (M) = e−αT (αT )
M

M !
. (4.1.16)

Example: Assuming that stars are randomly distributed in the galaxy (clearly unjusti-
fied) with a density n, what is the probability that the nearest star is at a distance R?

Since, the probability of finding a star in a small volume dV is ndV , and they are assumed
to be independent, the number of stars in a volume V is described by a Poisson process as in
Eq. (4.1.16), with α = n. The probability p(R), of encountering the first star at a distance
R is the product of the probabilities pnV (0), of finding zero stars in the volume V = 4πR3/3
around the origin, and pndV (1), of finding one star in the shell of volume dV = 4πR2dR at
a distance R. Both pnV (0) and pndV (1) can be calculated from Eq. (4.1.16), and

p(R)dR = pnV (0) pndV (1) =e−4πR3n/3 e−4πR2ndR 4πR2ndR,

=⇒ p(R) =4πR2n exp

(

−
4π

3
R3n

)

. (4.1.17)
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