4.2 Continuous random variable

4.2.1 Probability distribution function

Let us next discuss a random variable whose allowed values are not discrete, but continuous. In particular, consider a random variable x, whose outcomes are real numbers, i.e. $S \in \{-\infty < x < \infty\}$.

• The cumulative probability function (CPF) P(x), is the probability of an outcome with any value less than x, i.e. $P(x) = \text{prob.}(E \subset [-\infty, x])$. P(x) must be a monotonically increasing function of x, with $P(-\infty) = 0$ and $P(+\infty) = 1$.

Figure 4.1: A typical cumulative probability function.

• The probability density function (PDF) is defined by $p(x) \equiv dP(x)/dx$. Hence, $p(x)dx = \text{prob.}(E \in [x, x + dx])$. As a probability density, it is *positive*, and normalized such that

prob.(
$$S$$
) = $\int_{-\infty}^{\infty} dx \ p(x) = 1$. (4.2.1)

Note that since p(x) is a *probability density*, it has dimensions of $[x]^{-1}$, and changes its value if the units measuring x are modified. Unlike P(x), the PDF has no upper bound, i.e. $0 < p(x) < \infty$, and may contain divergences as long as they are integrable.

Figure 4.2: A typical probability density function.