4.2.2 Change of variables

- Consider a function $F(X)$ of the random variable X. as before the expectation value of the function is given by

$$
\begin{equation*}
\langle F(x)\rangle=\int_{-\infty}^{\infty} d x p(x) F(x) \tag{4.2.2}
\end{equation*}
$$

Figure 4.3: Obtaining the PDF for the function $F(x)$.

However, the function F is itself a random variable, with an associated PDF of $p_{F}(f) d f=\operatorname{prob} .(F \in[f, f+d f])$. There may be multiple solutions x_{i}, to the equation $F(x)=f$, and

$$
\begin{equation*}
p_{F}(f) d f=\sum_{i} p\left(x_{i}\right) d x_{i}, \quad \Longrightarrow \quad p_{F}(f)=\sum_{i} p\left(x_{i}\right)\left|\frac{d x}{d F}\right|_{x=x_{i}} \tag{4.2.3}
\end{equation*}
$$

The factors of $|d x / d F|$ are the Jacobians associated with the change of variables from x to F.

- As an example, consider $p(x)=\lambda \exp (-\lambda|x|) / 2$, and the function $F(x)=x^{2}$. There are two solutions to $F(x)=f$, located at $x_{ \pm}= \pm \sqrt{f}$, with corresponding Jacobians $\left| \pm f^{-1 / 2} / 2\right|$. Hence,

$$
P_{F}(f)=\frac{\lambda}{2} \exp (-\lambda \sqrt{f})\left(\left|\frac{1}{2 \sqrt{f}}\right|+\left|\frac{-1}{2 \sqrt{f}}\right|\right)=\frac{\lambda \exp (-\lambda \sqrt{f})}{2 \sqrt{f}}
$$

for $f>0$, and $p_{F}(f)=0$ for $f<0$. Note that $p_{F}(f)$ has an (integrable) divergence at $f=0$.

Figure 4.4: Probability density functions for x, and $F=x^{2}$.

