
4.2 Continuous random variable

4.2.1 Probability distribution function

Let us next discuss a random variable whose allowed values are not discrete, but continuous.
In particular, consider a random variable x, whose outcomes are real numbers, i.e. S ∈
{−∞ < x < ∞}.

• The cumulative probability function (CPF) P (x), is the probability of an outcome with
any value less than x, i.e. P (x) = prob.(E ⊂ [−∞, x]). P (x) must be a monotonically
increasing function of x, with P (−∞) = 0 and P (+∞) = 1.
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Figure 4.1: A typical cumulative probability function.

• The probability density function (PDF) is defined by p(x) ≡ dP (x)/dx. Hence, p(x)dx =
prob.(E ∈ [x, x + dx]). As a probability density, it is positive, and normalized such
that

prob.(S) =
∫ ∞

−∞
dx p(x) = 1 . (4.2.1)

Note that since p(x) is a probability density, it has dimensions of [x]−1, and changes
its value if the units measuring x are modified. Unlike P (x), the PDF has no upper
bound, i.e. 0 < p(x) < ∞, and may contain divergences as long as they are integrable.
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Figure 4.2: A typical probability density function.

104



4.2.2 Change of variables

• Consider a function F (X) of the random variable X . as before the expectation value
of the function is given by

〈F (x)〉 =
∫ ∞

−∞
dx p(x)F (x) . (4.2.2)
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Figure 4.3: Obtaining the PDF for the function F (x).

However, the function F is itself a random variable, with an associated PDF of
pF (f)df = prob.(F ∈ [f, f + df ]). There may be multiple solutions xi, to the equation
F (x) = f , and

pF (f)df =
∑

i

p(xi)dxi , =⇒ pF (f) =
∑

i
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. (4.2.3)

The factors of |dx/dF | are the Jacobians associated with the change of variables from
x to F .

• As an example, consider p(x) = λ exp(−λ|x|)/2, and the function F (x) = x2. There
are two solutions to F (x) = f , located at x± = ±

√
f , with corresponding Jacobians

| ± f−1/2/2|. Hence,
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for f > 0, and pF (f) = 0 for f < 0. Note that pF (f) has an (integrable) divergence at
f = 0.

105



p

x

p

f

F

0 0

Figure 4.4: Probability density functions for x, and F = x2.

4.2.3 The characteristic function

As in the earlier case of a discrete random variable, we can define the moment generating
function for a continuous variable as 〈G(λ) = 〈eλX〉. The characteristic function is simply
the moment generating function with λ = −ik, i.e.

p̃(k) =
〈

e−ikx
〉

=

∫

dx p(x) e−ikx . (4.2.4)

The notation p̃(k) is used to emphasize that the characteristic function is in fact the Fourier
transform of the original PDF. The PDF can thus be recovered from the characteristic
function through the inverse Fourier transform, i.e.

p(x) =
1

2π

∫

dkp̃(k) e+ikx . (4.2.5)

Moments of the random variable are obtained by expanding p̃(k) in powers of k around
k = 0, as

p̃(k) =

〈

∞
∑

n=0

(−ik)n

n!
xn

〉

=
∞
∑

n=0

(−ik)n

n!
〈xn〉 . (4.2.6)

Moments of the PDF around any point x0 can also be generated using the expansion

eikx0 p̃(k) =
〈

e−ik(x−x0)
〉

=
∞
∑

n=0

(−ik)n

n!
〈(x− x0)

n〉 . (4.2.7)

Cumulants of the random variable are obtained from a corresponding expansion of ln p̃(k),
as

ln p̃(k) =
∞
∑

n=1

(−ik)n

n!
〈xn〉c . (4.2.8)

An important theorem allows easy computation of moments in terms of the cumulants:
Represent the nth cumulant graphically as a connected cluster of n points. The mth moment
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is then obtained by summing all possible subdivisions of m points into groupings of smaller
(connected or disconnected) clusters. The contribution of each subdivision to the sum is
the product of the connected cumulants that it represents. Using this result the first four
moments are computed graphically as
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Figure 4.5: Graphical computation of the first four moments.

The corresponding algebraic expressions are

〈x〉 = 〈x〉c ,
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This theorem, which is the starting point for various diagrammatic computations in sta-
tistical mechanics and field theory, is easily proved by equating the expressions in Eqs. (4.2.6)
and (4.2.8) for p̃(k)

∞
∑

m=0

(−ik)m

m!
〈xm〉 = exp

[

∞
∑

n=1

(−ik)n

n!
〈xn〉c

]

=
∏

n

∑

pn

[

(−ik)npn

pn!

(

〈xn〉c
n!

)pn]

. (4.2.10)

Matching the powers of (−ik)m on the two sides of the above expression leads to

〈xm〉 =
′
∑

{pn}

m!
∏

n

1

pn!(n!)pn
〈xn〉pnc . (4.2.11)

The sum is restricted such that
∑

npn = m, and leads to the graphical interpretation given
above, as the numerical factor is simply the number of ways of breaking m points into {pn}
clusters of n points.

4.2.4 The Gaussian distribution

The normal (Gaussian) distribution describes a continuous real random variable x, with

p(x) =
1√
2πσ2

exp

[

−
(x− a)2

2σ2

]

. (4.2.12)
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The corresponding characteristic function also has a Gaussian form,

p̃(k) =

∫ ∞

−∞
dx

1√
2πσ2

exp

[

−
(x− a)2

2σ2
− ikx

]

= exp

[

−ika−
k2σ2

2

]

. (4.2.13)

Cumulants of the distribution can be identified from ln p̃(k) = −ika−k2σ2/2, using Eq. (4.2.8),
as

〈x〉c = a ,
〈

x2
〉

c
= σ2 ,

〈

x3
〉

c
=
〈

x4
〉

c
= · · · = 0 . (4.2.14)

The normal distribution is thus completely specified by its two first cumulants. This
makes the computation of moments using the cluster expansion of Eq, (4.2.9) particularly
simple, and

〈x〉 = a ,
〈

x2
〉

=σ2 + a2,
〈

x3
〉

=3σ2a + a3,
〈

x4
〉

=3σ4 + 6σ2a2 + a4, · · · . (4.2.15)

The normal distribution serves as the starting point for most perturbative computations
in field theory. The vanishing of higher cumulants implies that all graphical computations
involve only products of one point, and two point (known as propagators) clusters.
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