4.3 Many random variables

4.3.1 Joint PDF

With more than one random variable, the set of outcomes is an N-dimensional space, $\mathcal{S}_{\mathbf{x}}=$ $\left\{-\infty<x_{1}, x_{2}, \cdots, x_{N}<\infty\right\}$. For example, describing the location and velocity of a gas particle requires six coordinates.

- The joint PDF $p(\mathbf{x})$, is the probability density of an outcome in a volume element $d^{N} \mathbf{x}=\prod_{i=1}^{N} d x_{i}$ around the point $\mathbf{x}=\left\{x_{1}, x_{2}, \cdots, x_{N}\right\}$. The joint PDF is normalized such that

$$
\begin{equation*}
p_{\mathbf{x}}(\mathcal{S})=\int d^{N} \mathbf{x} p(\mathbf{x})=1 \tag{4.3.1}
\end{equation*}
$$

If, and only if, the N random variables are independent, the joint PDF is the product of individual PDFs,

$$
\begin{equation*}
p(\mathbf{x})=\prod_{i=1}^{N} p_{i}\left(x_{i}\right) \tag{4.3.2}
\end{equation*}
$$

- The unconditional PDF describes the behavior of a subset of random variables, independent of the values of the others. For example, if we are interested only in the location of a gas particle, an unconditional PDF can be constructed by integrating over all velocities at a given location, $p(\vec{x})=\int d^{3} \vec{v} p(\vec{x}, \vec{v})$; more generally

$$
\begin{equation*}
p\left(x_{1}, \cdots, x_{m}\right)=\int \prod_{i=m+1}^{N} d x_{i} p\left(x_{1}, \cdots, x_{N}\right) . \tag{4.3.3}
\end{equation*}
$$

- The conditional PDF describes the behavior of a subset of random variables, for specified values of the others. For example, the PDF for the velocity of a particle at a particular location \vec{x}, denoted by $p(\vec{v} \mid \vec{x})$, is proportional to the joint PDF $p(\vec{v} \mid \vec{x})=p(\vec{x}, \vec{v}) / \mathcal{N}$. The constant of proportionality, obtained by normalizing $p(\vec{v} \mid \vec{x})$, is

$$
\begin{equation*}
\mathcal{N}=\int d^{3} \vec{v} p(\vec{x}, \vec{v})=p(\vec{x}) \tag{4.3.4}
\end{equation*}
$$

the unconditional PDF for a particle at \vec{x}. In general, the unconditional PDFs are obtained from Bayes' theorem as

$$
\begin{equation*}
p\left(x_{1}, \cdots, x_{m} \mid x_{m+1}, \cdots, x_{N}\right)=\frac{p\left(x_{1}, \cdots, x_{N}\right)}{p\left(x_{m+1}, \cdots, x_{N}\right)} \tag{4.3.5}
\end{equation*}
$$

Note that if the random variables are independent, the unconditional PDF is equal to the conditional PDF.

