
4.3.2 Joint moments and cumulants

• The expectation value of a function F (x), is obtained as before from

〈F (x)〉 =
∫

dNx p(x)F (x) . (4.3.6)

• The joint characteristic function is obtained from the N -dimensional Fourier transfor-
mation of the joint PDF,
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• The joint moments and joint cumulants are generated by p̃(k) and ln p̃(k) respectively,
as
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(4.3.8)

• The previously described graphical relation between joint moments (all clusters of
labeled points), and joint cumulant (connected clusters) is still applicable. For example,
from
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we obtain
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The connected correlation 〈xα ∗ xβ〉c, is zero if xα and xβ are independent random
variables.


