4.4.2 Simplifications for large N

To describe equilibrium properties of macroscopic bodies, statistical mechanics has to deal
with the very large number N, of microscopic degrees of freedom. Actually, taking the
thermodynamic limit of N — oo leads to a number of simplifications, some of which are
described in this section.

There are typically three types of N dependence encountered in the thermodynamic limit:

e [ntensive quantities, such as temperature T', and generalized forces, e.g. pressure P,
and magnetic field B, are independent of N, i.e. O(N?).

e FEzxtensive quantities, such as energy E, entropy S, and generalized displacements, e.g.
volume V', and magnetization M, are proportional to N, i.e. O(N?1).

e Fxponential dependence, i.e. O(exp(N qb)), is encountered in enumerating discrete
micro-states, or computing available volumes in phase space.

e Other asymptotic dependencies are certainly not ruled out a priori. For example, the
Coulomb energy of N ions at fixed density scales as Q?/R ~ N°/3. Such dependencies
are rarely encountered in every day physics. The Coulomb interaction of ions is quickly
screened by counter-ions, resulting in an extensive overall energy. (This is not the case
in astrophysical problems since the gravitational energy is not screened. For example
the entropy of a black hole is proportional to the square of its mass.)

In statistical physics we frequently encounter sums or integrals of exponential variables.
Performing such sums in the thermodynamic limit is considerably simplified due to the
following results.

Summation of exponentials:

Consider the sum N
S=) & (4.4.6)
i=1

where each term is positive, with an exponential dependence on N, i.e.
0<& ~O(exp(Ngy)), (4.4.7)

and the number of terms N, is proportional to some power of N.
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Figure 4.6: A sum over N exponentially large quantities is dominated by the largest term.



Such a sum can be approximated by its largest term &,.x, in the following sense. Since
for each term in the sum, 0 < &; < Enax,

Emax < S < N Emax . (4.4.8)

An intensive quantity can be constructed from InS/N, which is bounded by
In Epax < InS < In Epax N In N

mex ¢ 22 < 2 = (4.4.9)
For N oc N?| the ratio In N'/N vanishes in the large N limit, and
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Saddle point integration:

Similarly, an integral of the form

7= /dxexp (No(z)) (4.4.11)

can be approximated by the maximum value of the integrand, obtained at a point x,,, which
maximizes the exponent ¢(z). Expanding the exponent around this point gives

T= / dx exp {N {qﬁ(mmax) - %W’(:cmax)\(:c — Tmax)® - } } : (4.4.12)

Note that at the maximum, the first derivative ¢'(zpax), is zero, while the second derivative
¢"(Tmax), is negative. Terminating the series at the quadratic order results in
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where the range of integration has been extended to [—o0,00]. The latter is justified since
the integrand is negligibly small outside the neighborhood of x.x.
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Figure 4.7: Saddle point evaluation of an ‘exponential’ integral.



There are two types of corrections to the above result. Firstly, there are higher order terms
in the expansion of ¢(x) around Z.,. These corrections can be looked at perturbatively,
and lead to a series in powers of 1/N. Secondly, there may be additional local maxima for
the function. A maximum at z, ., leads to a similar Gaussian integral that can be added to

Eq. (??). Clearly such contributions are smaller by O( exp{—N[¢(Zmax) — (T}ax)]}). Since
all these corrections vanish in the thermodynamic limit,

InZ 1 N|¢" (Xmax 1
Jlim. HW = lim [$(@ma) = 5 In (W} +0 <ﬁ)} = G(rmax) . (4.4.14)

The saddle point method for evaluating integrals is the extension of the above result to more
general integrands, and integration paths in the complex plane. (The appropriate extremum
in the complex plane is a saddle point.) The simplified version presented above is sufficient
for our needs.



