4.4.3 Stirling's approximation

A highly useful approximation for N ! at large N can be obtained by using a variant of the above method of integration. In order to get an integral representation of N !, start with the result

$$
\begin{equation*}
\int_{0}^{\infty} d x e^{-\alpha x}=\frac{1}{\alpha} \tag{4.4.15}
\end{equation*}
$$

Repeated differentiation of both sides of the above equation with respect to α leads to

$$
\begin{equation*}
\int_{0}^{\infty} d x x^{N} e^{-\alpha x}=\frac{N!}{\alpha^{N+1}} . \tag{4.4.16}
\end{equation*}
$$

Although the above result only applies to integer N, it is possible to define by analytical continuation a function,

$$
\begin{equation*}
\Gamma(N+1) \equiv N!=\int_{0}^{\infty} d x x^{N} e^{-x} \tag{4.4.17}
\end{equation*}
$$

for all N. While the integral in Eq. (4.4.17) is not exactly in the form of Eq. (4.4.11), it can still be evaluated by a similar method. The integrand can be written as $\exp (N \phi(x))$, with $\phi(x)=\ln x-x / N$. The exponent has a maximum at $x_{\max }=N$, with $\phi\left(x_{\max }\right)=\ln N-1$, and $\phi^{\prime \prime}\left(x_{\max }\right)=-1 / N^{2}$. Expanding the integrand in Eq. (4.4.17) around this point yields,

$$
\begin{equation*}
N!\approx \int d x \exp \left[N \ln N-N-\frac{1}{2 N}(x-N)^{2}\right] \approx N^{N} e^{-N} \sqrt{2 \pi N} \tag{4.4.18}
\end{equation*}
$$

where the integral is evaluated by extending its limits to $[-\infty, \infty]$. Stirling's formula is obtained by taking the logarithm of Eq. (4.4.18) as,

$$
\begin{equation*}
\ln N!=N \ln N-N+\frac{1}{2} \ln (2 \pi N)+\mathcal{O}\left(\frac{1}{N}\right) \tag{4.4.19}
\end{equation*}
$$

