
4.4.4 Information and Entropy

Consider a random variable with a discrete set of outcomes S = {xi}, occurring with prob-
abilities {p(i)}, for i = 1, · · · ,M . In the context of information theory there is a precise
meaning to the information content of a probability distribution: Let us construct a message
from N independent outcomes of the random variable. Since there are M possibilities for
each character in this message, it has an apparent information content of N ln2M bits; i.e.
this many binary bits of information have to be transmitted to convey the message precisely.
On the other hand, the probabilities {p(i)} limit the types of messages that are likely. For
example, if p2 ! p1, it is very unlikely to construct a message with more x1 than x2. In
particular, in the limit of large N , we expect the message to contain “roughly” {Ni = Npi}
occurrences of each symbol.2 The number of typical messages thus corresponds to the num-
ber of ways of rearranging the {Ni} occurrences of {xi}, and is given by the multinomial
coefficient
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. (4.4.20)

This is much smaller than the total number of messages Mn. To specify one out of g possible
sequences requires

ln2 g ≈ −N
M
∑

i=1

pi ln2 pi (forN → ∞) , (4.4.21)

bits of information. The last result is obtained by applying Stirling’s approximation for
lnN !. It can also be obtained by noting that
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where the sum has been replaced by its largest term, as justified in the previous section.

Shannon’s theorem

proves more rigorously that the minimum number of bits necessary to ensure that the per-
centage of errors in N trials vanishes in the N → ∞ limit, is ln2 g. For any non-uniform
distribution, this is less than the N ln2M bits needed in the absence of any information on
relative probabilities. The difference per trial is thus attributed to the information content
of the probability distribution, and is given by

I [{pi}] = ln2M +
M
∑

i=1

pi ln2 pi . (4.4.23)

2More precisely, the probability of finding any Ni that is different fromNpi by more than O(
√
N) becomes

exponentially small in N , as N → ∞.



Entropy:

Equation (4.4.20) is encountered frequently in statistical mechanics in the context of mixing
M distinct components; its natural logarithm is related to the entropy of mixing. More
generally, we can define an entropy for any probability distribution as

S = −
M
∑

i=1

p(i) ln p(i) = −〈ln p(i)〉 . (4.4.24)

The above entropy takes a minimum value of zero for the delta–function distribution p(i) =
δi,j, and a maximum value of lnM for the uniform distribution, p(i) = 1/M . S is thus a
measure of dispersity (disorder) of the distribution, and does not depend on the values of the
random variables {xi}. A one to one mapping to fi = F (xi) leaves the entropy unchanged,
while a many to one mapping makes the distribution more ordered and decreases S. For
example, if the two values, x1 and x2, are mapped onto the same f , the change in entropy is

∆S(x1, x2 → f) =

[

p1 ln
p1

p1 + p2
+ p2 ln

p2
p1 + p2

]

< 0 . (4.4.25)


