
4.4 From probability to certainty

4.4.1 Sums of random variables

Consider the sum S =
∑N

i=1 xi, where xi are random variables with a joint PDF of p(x).
The PDF for S is

pS(x) =

∫

dNx p(x)δ
(

x−
∑

xi

)

=

∫ N−1
∏

i=1

dxi p (x1, · · · , xN−1, x− x1 · · ·− xN−1) ,

(4.4.1)
and the corresponding characteristic function (using Eq. (4.3.7)) is given by

p̃S(k) =

〈

exp

(

−ik
N
∑

j=1

xj

)〉

= p̃ (k1 = k2 = · · · = kN = k) . (4.4.2)

Cumulants of the sum are obtained by expanding ln p̃S(k),

ln p̃ (k1 = k2 = · · · = kN = k) = −ik
N
∑

i1=1

〈xi1〉c +
(−ik)2

2

N
∑

i1,i2

〈xi1xi2〉c + · · · , (4.4.3)

as

〈S〉c =
N
∑

i=1

〈xi〉c ,
〈

S2
〉

c
=

N
∑

i,j

〈xixj〉c , · · · . (4.4.4)

If the random variables are independent, p(x) =
∏

pi(xi), and p̃S(k) =
∏

p̃i(k). The
cross–cumulants in Eq. (4.4.4) vanish, and the nth cumulant of S is simply the sum of the
individual cumulants, 〈Sn〉c =

∑N
i=1 〈xn

i 〉c. When all the N random variables are indepen-
dently taken from the same distribution1 p(x), this implies 〈Sn〉c = N 〈xn〉c, generalizing the
result obtained previously for the binomial distribution. For large values of N , the average
value of the sum is proportional to N , while fluctuations around the mean, as measured
by the standard deviation, grow only as

√
N . The random variable y = (S − N 〈x〉c)/

√
N ,

has zero mean, and cumulants that scale as 〈yn〉c ∝ N1−n/2. As N → ∞, only the second
cumulant survives, and the PDF for y converges to the normal distribution,

lim
N→∞

p

(

y =

∑N
i=1 xi −N 〈x〉c√

N

)

=
1

√

2π 〈x2〉c
exp

(

− y2

2 〈x2〉c

)

. (4.4.5)

(Note that the Gaussian distribution is the only distribution with only first and second
cumulants.)

The convergence of the PDF for the sum of many random variables to a normal dis-
tribution is an essential result in the context of statistical mechanics where such sums
are frequently encountered. The central limit theorem states a more general form of this
result: It is not necessary for the random variables to be independent, as the condition
∑N

i1,··· ,im 〈xi1 · · ·xim〉c ( O(Nm/2), is sufficient for the validity of Eq. (4.4.5).

1Such variables are referred to as IIDs for identical, independently distributed.
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4.4.2 Simplifications for large N

To describe equilibrium properties of macroscopic bodies, statistical mechanics has to deal
with the very large number N , of microscopic degrees of freedom. Actually, taking the
thermodynamic limit of N → ∞ leads to a number of simplifications, some of which are
described in this section.

There are typically three types ofN dependence encountered in the thermodynamic limit:

• Intensive quantities, such as temperature T , and generalized forces, e.g. pressure P ,
and magnetic field #B, are independent of N , i.e. O(N0).

• Extensive quantities, such as energy E, entropy S, and generalized displacements, e.g.
volume V , and magnetization #M , are proportional to N , i.e. O(N1).

• Exponential dependence, i.e. O
(

exp(Nφ)
)

, is encountered in enumerating discrete
micro-states, or computing available volumes in phase space.

• Other asymptotic dependencies are certainly not ruled out a priori. For example, the
Coulomb energy of N ions at fixed density scales as Q2/R ∼ N5/3. Such dependencies
are rarely encountered in every day physics. The Coulomb interaction of ions is quickly
screened by counter-ions, resulting in an extensive overall energy. (This is not the case
in astrophysical problems since the gravitational energy is not screened. For example
the entropy of a black hole is proportional to the square of its mass.)

In statistical physics we frequently encounter sums or integrals of exponential variables.
Performing such sums in the thermodynamic limit is considerably simplified due to the
following results.

Summation of exponentials:

Consider the sum

S =
N
∑

i=1

Ei , (4.4.6)

where each term is positive, with an exponential dependence on N , i.e.

0 ≤ Ei ∼ O
(

exp(Nφi)
)

, (4.4.7)

and the number of terms N, is proportional to some power of N .

1 2 3 4 5 6 7 8 9

Figure 4.6: A sum over N exponentially large quantities is dominated by the largest term.
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Such a sum can be approximated by its largest term Emax, in the following sense. Since
for each term in the sum, 0 ≤ Ei ≤ Emax,

Emax ≤ S ≤ NEmax . (4.4.8)

An intensive quantity can be constructed from lnS/N , which is bounded by

ln Emax

N
≤ lnS

N
≤ ln Emax

N
+

lnN
N

. (4.4.9)

For N ∝ Np, the ratio lnN /N vanishes in the large N limit, and

lim
N→∞

lnS
N

=
ln Emax

N
= φmax . (4.4.10)

Saddle point integration:

Similarly, an integral of the form

I =

∫

dx exp
(

Nφ(x)
)

, (4.4.11)

can be approximated by the maximum value of the integrand, obtained at a point xmax which
maximizes the exponent φ(x). Expanding the exponent around this point gives

I =

∫

dx exp

{

N

[

φ(xmax)−
1

2
|φ′′(xmax)|(x− xmax)

2 + · · ·
]}

. (4.4.12)

Note that at the maximum, the first derivative φ′(xmax), is zero, while the second derivative
φ′′(xmax), is negative. Terminating the series at the quadratic order results in

I ≈ eNφ(xmax)

∫

dx exp

[

−N
2
|φ′′(xmax)|(x− xmax)

2

]

≈

√

2π

N |φ′′(xmax)|
eNφ(xmax) , (4.4.13)

where the range of integration has been extended to [−∞,∞]. The latter is justified since
the integrand is negligibly small outside the neighborhood of xmax.

0

Figure 4.7: Saddle point evaluation of an ‘exponential’ integral.
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There are two types of corrections to the above result. Firstly, there are higher order terms
in the expansion of φ(x) around xmax. These corrections can be looked at perturbatively,
and lead to a series in powers of 1/N . Secondly, there may be additional local maxima for
the function. A maximum at x′

max, leads to a similar Gaussian integral that can be added
to Eq. (4.4.13). Clearly such contributions are smaller by O

(

exp{−N [φ(xmax)−φ(x′
max)]}

)

.
Since all these corrections vanish in the thermodynamic limit,

lim
N→∞

ln I
N

= lim
N→∞

[

φ(xmax)−
1

2N
ln

(

N |φ′′(xmax)|
2π

)

+O
(

1

N2

)]

= φ(xmax) . (4.4.14)

The saddle point method for evaluating integrals is the extension of the above result to more
general integrands, and integration paths in the complex plane. (The appropriate extremum
in the complex plane is a saddle point.) The simplified version presented above is sufficient
for our needs.

4.4.3 Stirling’s approximation

A highly useful approximation for N ! at large N can be obtained by using a variant of the
above method of integration. In order to get an integral representation of N !, start with the
result

∫ ∞

0

dxe−αx =
1

α
. (4.4.15)

Repeated differentiation of both sides of the above equation with respect to α leads to

∫ ∞

0

dx xNe−αx =
N !

αN+1
. (4.4.16)

Although the above result only applies to integer N , it is possible to define by analytical
continuation a function,

Γ(N + 1) ≡ N ! =

∫ ∞

0

dxxNe−x , (4.4.17)

for all N . While the integral in Eq. (4.4.17) is not exactly in the form of Eq. (4.4.11), it can
still be evaluated by a similar method. The integrand can be written as exp

(

Nφ(x)
)

, with
φ(x) = ln x − x/N . The exponent has a maximum at xmax = N , with φ(xmax) = lnN − 1,
and φ′′(xmax) = −1/N2. Expanding the integrand in Eq. (4.4.17) around this point yields,

N ! ≈
∫

dx exp

[

N lnN −N − 1

2N
(x−N)2

]

≈ NNe−N
√
2πN , (4.4.18)

where the integral is evaluated by extending its limits to [−∞,∞]. Stirling’s formula is
obtained by taking the logarithm of Eq. (4.4.18) as,

lnN ! = N lnN −N +
1

2
ln(2πN) +O

(

1

N

)

. (4.4.19)
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4.4.4 Information and Entropy

Consider a random variable with a discrete set of outcomes S = {xi}, occurring with prob-
abilities {p(i)}, for i = 1, · · · ,M . In the context of information theory there is a precise
meaning to the information content of a probability distribution: Let us construct a message
from N independent outcomes of the random variable. Since there are M possibilities for
each character in this message, it has an apparent information content of N ln2M bits; i.e.
this many binary bits of information have to be transmitted to convey the message precisely.
On the other hand, the probabilities {p(i)} limit the types of messages that are likely. For
example, if p2 - p1, it is very unlikely to construct a message with more x1 than x2. In
particular, in the limit of large N , we expect the message to contain “roughly” {Ni = Npi}
occurrences of each symbol.2 The number of typical messages thus corresponds to the num-
ber of ways of rearranging the {Ni} occurrences of {xi}, and is given by the multinomial
coefficient

g =
N !

∏M
i=1Ni!

. (4.4.20)

This is much smaller than the total number of messages Mn. To specify one out of g possible
sequences requires

ln2 g ≈ −N
M
∑

i=1

pi ln2 pi (forN →∞) , (4.4.21)

bits of information. The last result is obtained by applying Stirling’s approximation for
lnN !. It can also be obtained by noting that

1 =

(

∑

i

pi

)N

=
∑

{Ni}

N !
M
∏

i=1

pNi
i

Ni!
≈ g

M
∏

i=1

pNpi
i , (4.4.22)

where the sum has been replaced by its largest term, as justified in the previous section.

Shannon’s theorem:

Shannon proved more rigorously that the minimum number of bits necessary to ensure that
the percentage of errors in N trials vanishes in the N → ∞ limit, is ln2 g. For any non-
uniform distribution, this is less than the N ln2M bits needed in the absence of any informa-
tion on relative probabilities. The difference per trial is thus attributed to the information
content of the probability distribution, and is given by

I [{pi}] = ln2M +
M
∑

i=1

pi ln2 pi . (4.4.23)

2More precisely, the probability of finding any Ni that is different fromNpi by more than O(
√
N) becomes

exponentially small in N , as N →∞.
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Entropy:

Equation (4.4.20) is encountered frequently in statistical mechanics in the context of mixing
M distinct components; its natural logarithm is related to the entropy of mixing. More
generally, we can define an entropy for any probability distribution as

S = −
M
∑

i=1

p(i) ln p(i) = −〈ln p(i)〉 . (4.4.24)

The above entropy takes a minimum value of zero for the delta–function distribution p(i) =
δi,j, and a maximum value of lnM for the uniform distribution, p(i) = 1/M . S is thus a
measure of dispersity (disorder) of the distribution, and does not depend on the values of the
random variables {xi}. A one to one mapping to fi = F (xi) leaves the entropy unchanged,
while a many to one mapping makes the distribution more ordered and decreases S. For
example, if the two values, x1 and x2, are mapped onto the same f , the change in entropy is

∆S(x1, x2 → f) =

[

p1 ln
p1

p1 + p2
+ p2 ln

p2
p1 + p2

]

< 0 . (4.4.25)

4.4.5 Unbiased estimates

The entropy S can also be used to quantify subjective estimates of probabilities. In the
absence of any information, the best unbiased estimate is that all M outcomes are equally
likely. This is the distribution of maximum entropy. If additional information is available,
the unbiased estimate is obtained by maximizing the entropy subject to the constraints
imposed by this information. For example, if it is known that 〈F (x)〉 = f , we can maximize

S (α, β, {pi}) = −
∑

i

p(i) ln p(i)− α
(

∑

i

p(i)− 1

)

− β
(

∑

i

p(i)F (xi)− f

)

, (4.4.26)

where the Lagrange multipliers α and β are introduced to impose the constraints of nor-
malization, and 〈F (x)〉 = f , respectively. The result of the optimization is a distribution
pi ∝ exp

(

− βF (xi)
)

, where the value of β is fixed by the constraint. This process can be
generalized to an arbitrary number of conditions. It is easy to see that if the first n = 2k
moments (and hence n cumulants) of a distribution are specified, the unbiased estimate is
the exponential of an nth order polynomial.

In analogy with Eq. (4.4.24), we can define an entropy for a continuous random variable
(Sx = {−∞ < x <∞}) as

S = −
∫

dx p(x) ln p(x) = −〈ln p(x)〉 . (4.4.27)

There are, however, problems with this definition, as for example S is not invariant under
a one to one mapping. (After a change of variable to f = F (x), the entropy is changed by
〈|F ′(x)|〉.)
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