
5.1.1 Evolving sequence

As organisms reproduce, the underlying genetic information is passed on to subsequent gen-
erations. The copying of the genetic content is not perfect, and leads to a diverse and evolving
population of organisms after many generations. The changes are stochastic, and are thus
appropriately described by evolving probability distributions. After motivating such evolv-
ing probabilities in the contexts of DNA and populations, we introduce the mathematical
tools for treating them.

Let us consider the evolution of probabilities in the context of the simplified model of
N independently distributed sites. We model mutations by assuming that at subsequent
time-steps (generations) each site may change its state (independent of the other sites),
say from α to β with a transition probability πβα. The m × m such elements form the
transition probability matrix π. (Without the assumption that the sites evolve independently,
we would have constructed a much larger (mN × mN ) matrix Π. With the assumption of
independence, this larger matrix is a direct product of transition matrices for individual
sites, i.e. Π = π1 ⊗ π2 ⊗ · · · ⊗ πN , with πi a m × m matrix acting on site i.) With the
transition probability matrix, we can track the evolution of the probabilities as

pα(τ + 1) =
m
∑

β=1

παβpβ(τ), or in matrix form %p(τ + 1) = π%p(τ) = πτ%p(1), (5.1.1)

where the last identity is obtained by recursion, assuming that the transition probability
matrix remains the same for all generations, i.e. does not change with time.

Probabilities must be normalized to unity, and thus the transition probabilities are con-
strained by

∑

α

παβ = 1, or πββ = 1−
∑

α!=β

παβ . (5.1.2)

The last expression formalizes the statement that ithe probability to stay in the same state
is the complement of the probabilities to make a change. Using this result, we can rewrite
Eq. (5.1.1) as

pα(τ + 1) = pα(τ) +
∑

β !=α

[παβpβ(τ)− πβαpα(τ)] . (5.1.3)


