
5.1.3 Evolving binary sequence

As a simple example, consider a binary sequence (i.e. m = 2) with independent states A1

or A2 at each site.2 Let us assume that the state A1 can “mutate” to A2 at a rate µ2, while
state A2 may change to A1 with a rate µ1. The probabilities p1(t) and p2(t) now evolve in
time as
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The above 2× 2 transition rate matrix has the following two eigenvectors
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As anticipated, there is an eigenvector
−→
p∗ with eigenvalue of zero; the elements of this vector

have been normalized to add to unity, as required for probabilities. We have not normalized
the second eigenvector, whose eigenvalue −(µ1 + µ2) determines the rate of approach to
steady state.

To demonstrate evolution of probabilities with time, let us start with a sequence that is
purely A1, i.e. with p1 = 1 and p2 = 0 at t = 0. The formal solution to the linear differential
equation (5.1.7) is
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Decomposing the initial state as a sum over the eigenvectors, and noting the action of the
rate matrix on each eigenvector from Eq. (5.1.8), we find
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2Clearly with the assumption of independence we are really treating independent sites, and the insistence
on a sequence may appear frivolous. The advantage of this perspective, however, will become apparent in
the next section.



At long times the probabilities to find state A1 or A2 are in the ratios µ1 to µ2 as dictated
by the steady state eigenvector. The rate at which the probabilities converge to this steady
steady is determined by the second eigenvalue −(µ1 + µ2).


