
Chapter 5

Time dependent probabilities

5.1 Transition rates

5.1.1 Evolving sequence

As organisms reproduce, the underlying genetic information is passed on to subsequent gen-
erations. The copying of the genetic content is not perfect, and leads to a diverse and evolving
population of organisms after many generations. The changes are stochastic, and are thus
appropriately described by evolving probability distributions. After motivating such evolv-
ing probabilities in the contexts of DNA and populations, we introduce the mathematical
tools for treating them.

Let us consider the evolution of probabilities in the context of the simplified model of
N independently distributed sites. We model mutations by assuming that at subsequent
time-steps (generations) each site may change its state (independent of the other sites),
say from α to β with a transition probability πβα. The m × m such elements form the
transition probability matrix π. (Without the assumption that the sites evolve independently,
we would have constructed a much larger (mN × mN ) matrix Π. With the assumption of
independence, this larger matrix is a direct product of transition matrices for individual
sites, i.e. Π = π1 ⊗ π2 ⊗ · · · ⊗ πN , with πi a m × m matrix acting on site i.) With the
transition probability matrix, we can track the evolution of the probabilities as

pα(τ + 1) =
m
∑

β=1

παβpβ(τ), or in matrix form %p(τ + 1) = π%p(τ) = πτ%p(1), (5.1.1)

where the last identity is obtained by recursion, assuming that the transition probability
matrix remains the same for all generations, i.e. does not change with time.
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Probabilities must be normalized to unity, and thus the transition probabilities are con-
strained by

∑

α

παβ = 1, or πββ = 1−
∑

α!=β

παβ . (5.1.2)

The last expression formalizes the statement that ithe probability to stay in the same state
is the complement of the probabilities to make a change. Using this result, we can rewrite
Eq. (5.1.1) as

pα(τ + 1) = pα(τ) +
∑

β !=α

[παβpβ(τ)− πβαpα(τ)] . (5.1.3)

5.1.2 Steady state

Because of the conservation of probability in Eqs. (5.1.2) and (5.1.13), the transition proba-

bility matrix π, and by extension the rate matrixR have a left-eingenvector
←−
v∗ = (1, 1, · · · , 1)

with eigenvalues of unity and zero respectively, i.e.

←−
v∗π =

←−
v∗ , and

←−
v∗R = 0. (5.1.4)

For each eigenvalue of a matrix there is both a left eigenvector and a right eigenvector. The
matrices π and R thus must also have a right-eigenvector

−→
p∗ such that

π
−→
p∗ =

−→
p∗ , and R

−→
p∗ = 0. (5.1.5)

The elements of the vector
−→
p∗ represent the steady state probabilities for the process. These

probabilities no longer change with time. In many cases, the Perron–Frobenius theorem
ensures that the vector

−→
p∗ is unique, with positive elements as appropriate to probabilities.1

Since the matrix π is not symmetric, the remaining eigenvalues need not be real, but must
occur in complex conjugate pairs. These remaining eigenvalues of the transition matrix have
magnitude less than unity, and determine how an initial vector of probabilities approaches
the steady state.

1A condition for the validity of the above is that it any state should be accessible (through a set of
transitions) from any other states. Consequences of violation of this condition will be explored later in
connection with genetic drift and absorbing states.

118



From Eq. (5.1.3) we observe that a particular steady state
−→
p∗ can be achieved through

transition probabilities that satisfy the so-called condition of detailed balance,

παβp
∗
β = πβαp

∗
α . (5.1.6)

This condition holds for systems in thermal equilibrium, where the steady-state probabilities
are constrained to satisfy the Boltzmann distribution (p∗α ∝ exp(−βEα)). Equation (5.1.6)
requires equal probability fluxes between any pair of states. More general steady states can
be formed with the probability flux circulating along triplets and larger sets. Indeed, such
circulation of flux can be used as indicator of non-equilibrium steady states.

5.1.3 Evolving binary sequence

As a simple example, consider a binary sequence (i.e. m = 2) with independent states A1

or A2 at each site.2 Let us assume that the state A1 can “mutate” to A2 at a rate µ2, while
state A2 may change to A1 with a rate µ1. The probabilities p1(t) and p2(t) now evolve in
time as

d

dt

(

p1
p2

)

=

(

−µ2 µ1

µ2 −µ1

)(

p1
p2

)

. (5.1.7)

The above 2× 2 transition rate matrix has the following two eigenvectors

(

−µ2 µ1

µ2 −µ1

)( µ1

µ1+µ2
µ2

µ1+µ2

)

= 0, and

(

−µ2 µ1

µ2 −µ1

)(

1
−1

)

= −(µ1 + µ2)

(

1
−1

)

.

(5.1.8)

As anticipated, there is an eigenvector
−→
p∗ with eigenvalue of zero; the elements of this vector

have been normalized to add to unity, as required for probabilities. We have not normalized
the second eigenvector, whose eigenvalue −(µ1 + µ2) determines the rate of approach to
steady state.

2Clearly with the assumption of independence we are really treating independent sites, and the insistence
on a sequence may appear frivolous. The advantage of this perspective, however, will become apparent in
the next section.

119



To demonstrate evolution of probabilities with time, let us start with a sequence that is
purely A1, i.e. with p1 = 1 and p2 = 0 at t = 0. The formal solution to the linear differential
equation (5.1.7) is

(

p1(t)
p2(t)

)

= exp

[

t

(

−µ2 µ1

µ2 −µ1

)](

p1(0)
p2(0)

)

. (5.1.9)

Decomposing the initial state as a sum over the eigenvectors, and noting the action of the
rate matrix on each eigenvector from Eq. (5.1.8), we find

(

p1
p2

)

= exp

[

t

(

−µ2 µ1

µ2 −µ1

)][( µ1

µ1+µ2
µ2

µ1+µ2

)

+
µ2

µ1 + µ2

(

1
−1

)]

=

(

µ1

µ1+µ2
+ e−(µ1+µ2)t µ2

µ1+µ2
µ2

µ1+µ2
− e−(µ1+µ2)t µ2

µ1+µ2

)

. (5.1.10)

At long times the probabilities to find state A1 or A2 are in the ratios µ1 to µ2 as dictated
by the steady state eigenvector. The rate at which the probabilities converge to this steady
steady is determined by the second eigenvalue −(µ1 + µ2).

5.1.4 The Master equation

In many circumstances of interest the probabilities change slowly and continuously over time,
in which case we introduce a time interval ∆t between subsequent generations, and write

pα(τ + 1)− pα(τ)

∆t
=
∑

β !=α

[παβ
∆t

pβ(τ)−
πβα
∆t

pα(τ)
]

. (5.1.11)

In the limit of small ∆t, [pα(τ + 1)− pα(τ)]/∆t ≈ dpα/dt, while

παβ
∆t

= Rαβ +O(∆t) for α (= β, (5.1.12)

are the off-diagonal elements of the matrix R of transition probability rates. The diagonal
elements of the matrix describe the depletion rate of a particular state, and by conservation
of probability must satisfy, as in Eq. (5.1.2),

∑

α

Rαβ = 0, or Rββ = −
∑

α!=β

Rαβ. (5.1.13)

We thus arrive at
dpα(t)

dt
=
∑

β !=α

(Rαβpβ(t)− Rβαpα(t)) , (5.1.14)

which is known as the Master equation.
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5.1.5 Mutating Population

The previous example of a binary sequence of length N can be recast and interpreted in
terms of the evolution of a (haploid) population of fixed size as follows. Let us assume that
A1 and A2 denote two forms of a particular allele. In each generation any individual is
replaced by an offspring that mostly retains its progenitor’s allele, but may mutate to the
other form at some rate. In this model the total population size is fixed to N , while the
sub-populations N1 and N2 may vary. A particular state of the population is thus described
by N1 = n and N2 = N − n, and since n = 0, 1, · · · , N there are N + 1 possible states. At a
particular time, the system may be in any one of these states with probability p(n, t), and
we would like to follow the evolution of these probabilities.

After an individual replication event (A1 to A1 at rate −µ2, A1 to A2 at rate µ2, A2 to
A1 at rate µ1, or A2 to A2 at rate −µ1), the number N either stays the same, or changes
by unity. Thus the transition rate matrix only has non-zero terms along or adjoining to the
diagonal. For example

Rn,n+1 = µ2(n + 1), and Rn,n−1 = µ1(N − n+ 1), (5.1.15)

where the former indicates that a population of n + 1 A1s can decrease by unity if any
one of them mutates to A2, while a population with n − 1 A1s increases by unity if any of
A2s mutates to A1. The diagonal terms are obtained from the normalization condition in
Eq. (5.1.13) resulting in the Master equation

dp(n, t)

dt
= µ2(n+1)p(n+1)+ µ1(N − n+1)p(n− 1)−µ2np(n)− µ1(N − n)p(n) , (5.1.16)

for 0 < n < N , and with boundary terms

dp(0, t)

dt
= µ2p(1)− µ1Np(0), and

dp(N, t)

dt
= µ1p(N − 1)− µ2Np(N) . (5.1.17)

The above equation looks complicated, but in fact admits a simple solution as justified in
the different context described next.
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