1.2 First order ordinary differential equations

1.2.1 General solution

Equation (1.1.10) is a typical first order ordinary differential equation (ODE). The stationary points of a general such ODE of the form $\dot{x}=F(x)$ are obtained by as solutions to $F\left(x^{*}\right)=0$. To plot the trajectory of motion, starting from $x(t=0)=x_{0}$, we can use the following procedure ${ }^{2}$

$$
\begin{equation*}
\frac{d x}{d t}=F(x), \quad \Longrightarrow \quad \frac{d x}{F(x)}=d t, \quad \Longrightarrow \quad t=\int_{x_{0}}^{x(t)} \frac{d x^{\prime}}{F\left(x^{\prime}\right)} \tag{1.2.3}
\end{equation*}
$$

Assuming that we can evaluate the integral in the final expression, we still need to invert the result to obtain the explicit form of $x(t)$.

Let us redrive the solution for the decaying linear spring in Eq. (1.1.11), with $F(x)=-\gamma x$, noting:

$$
\begin{equation*}
t=\int_{x_{0}}^{x(t)} \frac{d x^{\prime}}{\left(-\gamma x^{\prime}\right)}=-\frac{1}{\gamma} \ln \left(\frac{x(t)}{x_{0}}\right), \quad \Longrightarrow \quad x(t)=x_{0} e^{-\gamma t} \tag{1.2.4}
\end{equation*}
$$

as obtained in Eq. (1.1.15) by summing the Taylor series.
A slight variations is obtained by considering $F(x)=u-\gamma x$, starting from $x=0$ and $t=0$, in which case

$$
\begin{equation*}
t=\int_{0}^{x(t)} \frac{d x^{\prime}}{\left(u-\gamma x^{\prime}\right)}=-\frac{1}{\gamma} \ln \left(\frac{u-\gamma x(t)}{u}\right), \quad \Longrightarrow \quad x(t)=\frac{u}{\gamma}\left(1-e^{-\gamma t}\right) . \tag{1.2.5}
\end{equation*}
$$

Once again, the coordinate approaches its equilibrium point, $x^{*}=u / \gamma$ (solution of $F\left(x^{*}\right)=0$ exponentially. Indeed this solution is identical to the previous one, obtained by a shifting the variable x by $x^{*}=x_{0}$.

[^0]Thus to lowest order in $d t$ as $d t \rightarrow 0$,

$$
\begin{equation*}
d x \equiv x(t+d t)-x(t)=d t \frac{d x}{d t} \quad \Longrightarrow \quad d t=\frac{d x}{d x / d t} \tag{1.2.2}
\end{equation*}
$$

[^0]: ${ }^{2}$ To justify the first step in Eq. (1.2.3), recall that from the Taylor series

 $$
 \begin{equation*}
 x(t+d t)=x(t)+\frac{d x}{d t} d t+\text { terms of order } d t^{2} \text { and higher. } \tag{1.2.1}
 \end{equation*}
 $$

