1.2.2 Population growth — Transcritical bifurcation

After an organism invades a hospitable habitat, its initial rapid reproduction is typically
exponential. However, competition for available resources eventually slows down growth.
Indicating the size of the population by N(¢), and tis rate of change by G(V) leads to the

differential equation
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The terms in the Taylor expansion of G(N) can now be constrained as applicable to descrip-

tion of a population:

e go = 0 if the only mechanism for population growth is reproduction of its existing
members.

e g, = r > 0 is the reproduction rate that by itself leads to exponential growth. In
principle, this parameter can be made negative, e.g. by removing needed resources.

e ¢y < 0, since competition for resources reduces the reproduction rate. With a view to
later interpretation we relabel g, = —r/N*.

Typically, the Taylor expansion of G(N) is stopped at second order, resulting in
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with N* denoting the capacity of the habitat. Following the general procedure, the solution
to this ODE can be obtained as follows
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Note that we can always turn a composite fraction into a sum of fractions involving its
factors. this enables easy computation of the integrals, leading to
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An easy way to solve the final equation is by noting that any fraction A/B = C/D can be
recast as A/(A+ B) = C/(C + D). Applying this to the above equation leads to
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In the context of population evolution, Eq. (1.2.7) is known as the logistic growth; its solution
in Eq. (1.2.10) is the logistic growth law.

Now consider initial populations of the same size N, introduced in a range of habitats
differing in the parameter r in Eq. (1.2.7); hospitable habitats correspond to r > 0, inhos-
pitable ones to r < 0. In considering both positive and negative r it is more natural to write



the growth equation as N = rN — g, N2. For the same value of g (degree of competition),
as r — 0, the steady state (long-time) size of the population also vanishes as N* = r/gs.
Clearly, for » < 0, a negative solution for N* is meaningless, and the population collapses.
Upon changing the variable r, the function N*(r) thus changes from N* = 0 for r < 0
to N* = r/gy for r > 0. Such a function that cannot be represented by a single Taylor
series around the point r = 0, is said to be non-analytic at that point. This particular non-
analyticity of N*(r) is an example of a so-called bifurcation. It is best understood by noting
that Eq. (1.2.7) represents gradient descent in the “potential” V(N) = —rN?/2 + gy, N3/3.
The potential has two extrema at N* = 0 and N* = r/gy. For r < 0, the solution at N* =0
is stable, while for r > 0, the one at N* = r/gs; at r = 0, the two extrema collide and change
stability.?
The above scenario, generic to ODEs of the form

=€y —y>. (1.2.11)

is known as a transcritical bifurcation. Note that the Logistic Eq. (1.2.7) is equivalent to
Eq.(1.2.11) upon rescaling N = N*y/r and setting € = 7.

+ Howcated)

Figure 1.1: Graphical representation of Eq. (1.2.11) with arrows pointing to the direction of
1.

3The solutions to dV/dz|,. = 0 correspond to extrema of the function V (), including both minima and
maxima. In a dynamics represented by gradient descent in V(x), the minima represent stable end-points
while the maxima are unstable points. Any small perturbation around a maximum will cause the coordinate
to descent to the closest minimum.



