
1.2.2 Population growth – Transcritical bifurcation

After an organism invades a hospitable habitat, its initial rapid reproduction is typically
exponential. However, competition for available resources eventually slows down growth.
Indicating the size of the population by N(t), and tis rate of change by G(N) leads to the
differential equation

dN

dt
= G(N) = g0 + g1N + g2N

2 + · · · . (1.2.6)

The terms in the Taylor expansion of G(N) can now be constrained as applicable to descrip-
tion of a population:

• g0 = 0 if the only mechanism for population growth is reproduction of its existing
members.

• g1 ≡ r > 0 is the reproduction rate that by itself leads to exponential growth. In
principle, this parameter can be made negative, e.g. by removing needed resources.

• g2 < 0, since competition for resources reduces the reproduction rate. With a view to
later interpretation we relabel g2 = −r/N∗.

Typically, the Taylor expansion of G(N) is stopped at second order, resulting in
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dt
= rN

(

1−
N

N∗

)

, (1.2.7)

with N∗ denoting the capacity of the habitat. Following the general procedure, the solution
to this ODE can be obtained as follows
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. (1.2.8)

Note that we can always turn a composite fraction into a sum of fractions involving its
factors. this enables easy computation of the integrals, leading to
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ert . (1.2.9)

An easy way to solve the final equation is by noting that any fraction A/B = C/D can be
recast as A/(A+B) = C/(C +D). Applying this to the above equation leads to

N(t)

N∗ =
N0ert

N∗ +N0(ert − 1)
=⇒ N(t) =

N∗N0ert

N∗ +N0(ert − 1)
. (1.2.10)

In the context of population evolution, Eq. (1.2.7) is known as the logistic growth; its solution
in Eq. (1.2.10) is the logistic growth law.

Now consider initial populations of the same size N0 introduced in a range of habitats
differing in the parameter r in Eq. (1.2.7); hospitable habitats correspond to r > 0, inhos-
pitable ones to r < 0. In considering both positive and negative r it is more natural to write



the growth equation as Ṅ = rN − g2N2. For the same value of g2 (degree of competition),
as r → 0, the steady state (long-time) size of the population also vanishes as N∗ = r/g2.
Clearly, for r < 0, a negative solution for N∗ is meaningless, and the population collapses.
Upon changing the variable r, the function N∗(r) thus changes from N∗ = 0 for r < 0
to N∗ = r/g2 for r > 0. Such a function that cannot be represented by a single Taylor
series around the point r = 0, is said to be non-analytic at that point. This particular non-
analyticity of N∗(r) is an example of a so-called bifurcation. It is best understood by noting
that Eq. (1.2.7) represents gradient descent in the “potential” V (N) = −rN2/2 + g2N3/3.
The potential has two extrema at N∗ = 0 and N∗ = r/g2. For r < 0, the solution at N∗ = 0
is stable, while for r > 0, the one at N∗ = r/g2; at r = 0, the two extrema collide and change
stability.3

The above scenario, generic to ODEs of the form

ẏ = εy − y2 . (1.2.11)

is known as a transcritical bifurcation. Note that the Logistic Eq. (1.2.7) is equivalent to
Eq.(1.2.11) upon rescaling N = N∗y/r and setting ε = r.

Figure 1.1: Graphical representation of Eq. (1.2.11) with arrows pointing to the direction of
ẏ.

3The solutions to dV/dx|x∗ = 0 correspond to extrema of the function V (x), including both minima and
maxima. In a dynamics represented by gradient descent in V (x), the minima represent stable end-points
while the maxima are unstable points. Any small perturbation around a maximum will cause the coordinate
to descent to the closest minimum.


