
5.2 Continuum limit

5.2.1 Drift and diffusion

Let us now consider evolving probabilities for a generic situation where the states are ordered
along a line, such as in the previous examples with population size n = 0, 1, 2 · · · , N . The
general form of the Master equation is

dpn
dt

= +
∑

m!=n

Rnmpm −
∑

m!=n

Rmnpn . (5.2.1)

In many relevant circumstances the number of states is large, and the probability varies
smoothly from one value of n to the next. In such cases it is reasonable to replace the
discrete index n with a continuous variable x, the probabilities pn(t) with a probability
density p(x, t), and the rates Rmn with a rate function R(x′, x). The rate function R depends
on two variables x and x′, denoting respectively the start and end positions for a transition
along the line. We have the option of redefining the two arguments of this function, and it
is useful to reparameterize it as R̃(x′−x, x) ≡ R(x′, x) indicating the rate at which, starting
from the position x, a transition is made to a position ∆x = x′ − x away. As in the case of
mutations, there is usually a preference for changes that are local, i.e. with rates that decay
rapidly when the separation x′ − x becomes large.

These transformations and relabelings,

n→ x, pn(t)→ p(x, t), Rmn → R̃(x′ − x, x) , (5.2.2)

enable us to transform Eq. (5.2.1) to the continuous integral equation

∂

∂t
p(x, t) = +

∫ ∗
dx′R̃(x− x′, x′)p(x′, t)−

∫ ∗
dx′R̃(x′ − x, x)p(x, t) . (5.2.3)

Some care is necessary in replacing the sums with integrals, as the summations in Eq. (5.2.1)
exclude the term with m = n. To treat this restriction in the continuum limit, we focus on
an interval y around any point x, and consider the change in probability due to incoming
flux from x− y and the outgoing flux to x+ y, thus arriving at3

∂

∂t
p(x, t) =

∫

dy
[

R̃(y, x− y)p(x− y)− R̃(y, x)p(x)
]

. (5.2.4)

3In Eq. (5.2.3) this amounts to change of variable from x′ to (x − y) in the first integral, and to (x + y)
in the second.



Note that the contribution for y = 0 is now clearly zero. The flux difference for small y
is now estimated by a Taylor expansion of the first term in the square bracket, but only
with respect to the location of the incoming flux, treating the argument pertaining to the
separation of the two points as fixed, i.e.

R̃(y, x−y)p(x−y) = R̃(y, x)p(x)−y ∂
∂x

(

R̃(y, x)p(x)
)

+
y2

2

∂2

∂x2

(

R̃(y, x)p(x)
)

+· · · . (5.2.5)

While formally correct, the above expansion is useful only in cases where typical values of
y are small (i.e. when only almost local transitions occur). Keeping terms up to the second
order, Eq. (5.2.4) can be rewritten as

∂

∂t
p(x, t) = −

∫

dy y
∂

∂x
(R̃(y, x)p(x)) +

1

2

∫

dy y2
∂2

∂x2
(R̃(y, x)p(x)). (5.2.6)

The integrals over y can be taken inside the derivatives with respect to x,

∂

∂t
p(x, t) = − ∂

∂x

[

p(x)

(
∫

dy yR̃(y, x)

)]

+
1

2

∂2

∂x2

[

p(x)

(
∫

dy y2R̃(y, x)

)]

, (5.2.7)

after which we obtain

∂p(x, t)

∂t
= − ∂

∂x
[v(x) p(x, t)] +

∂2

∂x2
[D(x)p(x, t)] . (5.2.8)

We have introduced

v(x) ≡
∫

dy yR̃(y, x) =
〈∆(x)〉
∆t

, (5.2.9)

and

D(x) ≡ 1

2

∫

dy y2R̃(y, x) =
1

2

〈∆(x)2〉
∆t

. (5.2.10)

Equation (5.2.8) is a prototypical description of drift and diffusion which appears in
many contexts. The drift term v(x) expresses the rate (velocity) with which transitions
change (on average) the position from x. Given the probabilistic nature of the process, there
are variations in the rate of change of position captured by the position dependent diffusion
coefficient D(x).4 The drift–diffusion equation is known as the forward Kolmogorov equation
in the context of populations. As a description of random walks it appeared earlier in physics
literature as the Fokker–Planck equation.

4The diffusion coefficient is usually associated with the variance,
〈

∆(x)2
〉

c
≡
〈

∆(x)2
〉

−〈∆(x)〉2. However,
in the limit of ∆t→ 0, the squared mean is of second order in ∆t, and can be ignored.


