
5.2.3 Evolving composition of a population of fixed size

Let us examine the case of the dynamics of a fixed population of N individuals which can
come in two variants (alleles) A1 and A2. At a particular time, there can be n individuals
of type 1, and (N − n) individuals of type 2. For N " 1, it is convenient to introduce the
composition x = n/N , which in the continuum limit x is limited to the interval [0, 1]. We
shall consider the following two processes contributing to the change of population over time:

Mutations:

In an infinitesimal time interval, the number n increases or decreases by 1, at rates given in
Eq. (5.1.15) as Rn,n+1 = µ2(n+ 1) and Rn,n−1 = µ1(N − n+ 1). This leads to

vmutation(x) =
〈∆n〉
N

=
Rn+1,n(+1) +Rn−1,n(−1)

N
=

1

N
[µ1(N − n)− µ2n] = µ1(1−x)−µ2x ,

(5.2.17)
while

Dmutation(x) =
〈∆n2〉
2N2

=
Rn+1,n +Rn−1,n

2N2
=

1

2N2
[µ1(N − n) + µ2n] =

µ1(1− x) + µ2x

2N
.

(5.2.18)

Binary competition

Let us consider another form of population change, in which one individual is randomly
chosen to die, and another chosen to reproduce (thus keeping the population fixed).5 If the
two individuals are from the same group there will be no change in composition, which if
one individual in taken from group 1 and the other from group 2, the number n will change
by ±1. The probability for latter is proportional to n(N − n), accounting to the number
of possible choices of individuals from the two groups. In principle, and the corresponding
changes can be assigned rates

Rn,n+1 = αn(N − n), and Rn,n−1 = α′n(N − n) . (5.2.19)

In principle, the two rates α and α′ can be different, providing a competitive edge that will
allow one group to expand at the expense of the other. However, here we shall consider the
symmetric case with α = α′ which leads to

vcompetition(x) =
〈∆n〉
N

= α
n(N − n)(+1) + n(N − n)(−1)

N
= 0 , (5.2.20)

and

Dcompetition(x) =
〈∆n2〉
2N2

= α
n(N − n) + n(N − n)

2N2
= αx(1− x) . (5.2.21)

5In population dynamics, this is known as a Moran process.



Adding both contributions results in

v(x) = µ1(1− x)− µ2x , (5.2.22)

dominated by mutation, and

D(x) = αx(1− x) +
µ1(1− x) + µ2x

2N
≈ αx(1− x) . (5.2.23)

The last approximation of ignoring the contribution from mutations to diffusion is justified
as long N is large, while mutation and competition rates are comparable. It enables a closed
form solution to the steady state, as

logD(x)p∗(x) =

∫ x

dx′ v(x
′)

D(x′)

=
1

α

∫ x

dx′
[

µ1

x′ −
µ2

1− x′

]

=
1

α
[µ1 ln x+ µ2 ln(1− x)] + constant,

resulting in

p∗(x) ∝ 1

x(1− x)
× xµ1/α × (1− x)µ2/α . (5.2.24)

Setting for convenience µ1 = µ2 = µ, the steady-state solution in Eq. (5.2.24) simplifies
to

p∗(x) ∝ [x(1− x)]µ/α−1 . (5.2.25)

The shape of the solution is determined by the ration µ/α. If µ > α, then the distribution
has a peak at x = 1/2 and diminishes to the sides, while for µ < α, p∗(x) has peaks at
either extreme. This can be understood by considering the limit of no mutations (µ = 0): I
this case fluctuations due to diffusion may randomly bring the population to a uniform state
with n = 0 or n = N . In the absence of mutation, there can then be no further change to
the population. These two limiting states then act as sinks of probability and in the final
state the discrete probabilities will be zero, expect for p∗0 and p∗N . The absence of a proper
continuum limit is then signaled by a p∗(x) in Eq. (5.2.24) that can not be normalized to
unit.


