5.3.5 Einstein’s relation

Let us focus on the center of mass degree of freedom for bodies immersed in a fluid bath.
For each body we can observe the steady state velocity v; under the action of a strong
force F;, and hence calculate a mobility factor p; = v;/F;. In the absence of any external
potential the body will diffuse in the fluid, and by observing its mean-squared displacements
after a long time t, we can obtain a diffusion constant D;. If the particle is now trapped
in a potential V;(z;), after a sufficiently long time its probability distribution must satisfy
p*(x;) o< exp (—%ﬂm) according to Eq. (5.3.11). However, following Eq. (5.3.20), the
maximum likelihood distribution is p o exp (—8V;(x;)) irrespective of the characteristics of
the object. Both distributions have exponential forms, and coincide if

8= %, — D, = uksT. (5.3.21)
The above, Einstein relation quantifying the relations between fluctuations and dissipation,
relating the diffusion coefficient (a manifestation of fluctuations in force) to the mobility
(characterizing the dissipative force through F; = (1/p;)v;.

While we focused on the potential energy of the center of mass, according to the Boltz-
mann probability, all additive components of the energy must be exponentially distributed.
For example, let us consider the kinetic energy of the center of mass K (v) = mwv?/2. In the
absence of a trapping potential, we can rewrite Eq. (5.3.1) as
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where 7n(t) = frandom(t)/pt as before, and for simplicity we consider motion in only one

direction. This linear ODE can be solved for arbitrary forcing function 7(t), since it is
equivalent to
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which integrates to
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Thus, starting from v(t = 0) = v(0), we obtain
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v(t) = v(0)emn +/ dt'e e n(t') . (5.3.25)
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Since (n(t)) = 0, averaging the above equation yields

(w(t)) =v(0)ems — 0 for t>mpu. (5.3.26)

The initial velocity thus makes a transient contribution that decays over a characteristic
time 7 = myu. In ignoring the inertial term in Eq. (5.3.2), we implicitly looked at longer



time scales than 7. The variance of the velocity is then given by
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(v(t)?), = /Ot dt,dty exp ( ) (7(t)7(ta)) . (5.3.27)

Using the co-variance of noise from Eq. (5.3.5) leads to
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At long times t — oo the integral over time equals (2um)~!, leading to the simple result

(w(t)e = - =

- 2 = 5.3.29
Py (5.3.29)

As a sum over many Gaussian random variables, the velocity v(t) at long times is itself
Gaussian distributed. From the computed mean and variance, we can then construct its
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p(v) = exp (_%BT) \/ kT (5.3.30)

confirming the exponential distribution of the kinetic energy component of the total energy.




