
5.3.5 Einstein’s relation

Let us focus on the center of mass degree of freedom for bodies immersed in a fluid bath.
For each body we can observe the steady state velocity vi under the action of a strong
force Fi, and hence calculate a mobility factor µi = vi/Fi. In the absence of any external
potential the body will diffuse in the fluid, and by observing its mean-squared displacements
after a long time t, we can obtain a diffusion constant Di. If the particle is now trapped
in a potential Vi(xi), after a sufficiently long time its probability distribution must satisfy

p∗(xi) ∝ exp
(

−µiVi(xi)
Di

)

according to Eq. (5.3.11). However, following Eq. (5.3.20), the

maximum likelihood distribution is p ∝ exp (−βVi(xi)) irrespective of the characteristics of
the object. Both distributions have exponential forms, and coincide if

β =
µi

Di
, =⇒ Di = µikBT . (5.3.21)

The above, Einstein relation quantifying the relations between fluctuations and dissipation,
relating the diffusion coefficient (a manifestation of fluctuations in force) to the mobility
(characterizing the dissipative force through Fi = (1/µi)vi.

While we focused on the potential energy of the center of mass, according to the Boltz-
mann probability, all additive components of the energy must be exponentially distributed.
For example, let us consider the kinetic energy of the center of mass K(v) = mv2/2. In the
absence of a trapping potential, we can rewrite Eq. (5.3.1) as

m v̇ = −v

µ
+ frandom(t) , ⇒ v̇ +

v

mµ
= η(t) , (5.3.22)

where η(t) = frandom(t)/µ as before, and for simplicity we consider motion in only one
direction. This linear ODE can be solved for arbitrary forcing function η(t), since it is
equivalent to

d

dt

[

e
t

mµ v(t)
]

= e
t

mµ η(t) , (5.3.23)

which integrates to

e
t

mµv(t)− v(0) =

∫ t

0

dt′e
t′

mµ η(t′) . (5.3.24)

Thus, starting from v(t = 0) = v(0), we obtain

v(t) = v(0)e
−t
mµ +

∫ t

0

dt′e
t′−t
mµ η(t′) . (5.3.25)

Since 〈η(t)〉 = 0, averaging the above equation yields

〈v(t)〉 = v(0)e
−t
mµ → 0 for t' mµ . (5.3.26)

The initial velocity thus makes a transient contribution that decays over a characteristic
time τ = mµ. In ignoring the inertial term in Eq. (5.3.2), we implicitly looked at longer



time scales than τ . The variance of the velocity is then given by

〈v(t)2〉c =
∫ t

0

dt1dt2 exp

(

t1 + t2 − 2t

mµ

)

〈η̃(t1)η̃(t2)〉 . (5.3.27)

Using the co-variance of noise from Eq. (5.3.5) leads to

〈v(t)2〉c = 2D

∫ t

0

dt′e−2(t−t′)/(mµ) . (5.3.28)

At long times t→∞ the integral over time equals (2µm)−1, leading to the simple result

〈v(t)2〉c =
D

mµ
=

kBT

m
. (5.3.29)

As a sum over many Gaussian random variables, the velocity v(t) at long times is itself
Gaussian distributed. From the computed mean and variance, we can then construct its
PDF as

p(v) = exp

(

− mv2

2kBT

)√

m

2πkBT
, (5.3.30)

confirming the exponential distribution of the kinetic energy component of the total energy.


