1.3.2 Complex exponentials and SHO

In Eq. (1.1.18) the general solution for simple harmonic oscillations was expressed as a sum of trigonomic functions, sine and cosine. In the same way that a simple exponential e^{t} is the solution of the simplest linear ODE $\dot{x}=x$, sine and cosine are natural solutions of $\ddot{x}=-x$. Knowing any number of derivatives still convert an exponential to itself, let us try out the exponential $x_{0} e^{\lambda t}$ as a solution to the equation, $\ddot{x}+\omega_{0}^{2} x=0$. Taking two derivatives yields

$$
\begin{equation*}
\lambda^{2} x_{0} e^{\lambda t}=-\omega_{0}^{2} x_{0} e^{\lambda t}, \quad \Rightarrow \quad \lambda= \pm i \omega_{0} \tag{1.3.4}
\end{equation*}
$$

where ω_{0} is a real number, while i stands for the square root of $-1(i=\sqrt{-1})$, such that $i^{2}=-1, i^{3}=-i, i^{4}=+1$, etc. Note that some texts use j to denote $\sqrt{-1}$, which can be confusing. It is easily checked that the sum of two such exponentials is also a solution, and thus the most general solution can thus be written as

$$
x(t)=c_{+} e^{i \omega_{0} t}+c_{-} e^{-i \omega_{0} t}
$$

where c_{+}and c_{-}can in fact be complex numbers. This may appear strange, since each complex number, $z=a+i b$, has both a real and imaginary part, giving the impression that the general solution depends on 4 independent parameters. The resolution is that for classical ${ }^{5}$ physical problems we are only interested in real solutions to the problem, and must choose $c_{+}=c_{-}^{*}=c,{ }^{6}$ and the solution is then given by the real part as

$$
x(t)=\Re\left[c e^{i \omega_{0} t}\right] .
$$

To gain better understanding of the complex exponential, let us examine its power series

$$
\begin{align*}
e^{i \omega_{0} t} & =1+i \omega_{0} t+\frac{\left(i \omega_{0} t\right)^{2}}{2!}+\frac{\left(i \omega_{0} t\right)^{3}}{3!}+\frac{\left(i \omega_{0} t\right)^{4}}{4!}+\cdots \\
& =\left[1-\frac{\left(\omega_{0} t\right)^{2}}{2!}+\frac{\left(\omega_{0} t\right)^{4}}{4!}-\cdots\right]+i\left[\omega_{0} t-\frac{\left(\omega_{0} t\right)^{3}}{3!}+\cdots\right] \\
& =\cos \left(\omega_{0} t\right)+i \sin \left(\omega_{0} t\right), \tag{1.3.5}
\end{align*}
$$

where we have used the power series for sine and cosine. This is the famous Euler formula. From the the above equation, and its complex conjugate

$$
e^{i \omega_{0} t}=\cos \left(\omega_{0} t\right)+i \sin \left(\omega_{0} t\right), \quad e^{-i \omega_{0} t}=\cos \left(\omega_{0} t\right)-i \sin \left(\omega_{0} t\right),
$$

we obtain

$$
\cos \left(\omega_{0} t\right)=\frac{e^{i \omega_{0} t}+e^{-i \omega_{0} t}}{2}, \quad \sin \left(\omega_{0} t\right)=\frac{e^{i \omega_{0} t}-e^{-i \omega_{0} t}}{2 i} .
$$

[^0]Hence our original solution can be written as

$$
\begin{align*}
x(t) & =x_{0} \cos \left(\omega_{0} t\right)+\frac{v_{0}}{\omega_{0}} \sin \left(\omega_{0} t\right) \\
& =x_{0} \frac{e^{i \omega_{0} t}+e^{-i \omega_{0} t}}{2}+\frac{v_{0}}{\omega_{0}} \frac{e^{i \omega_{0} t}-e^{-i \omega_{0} t}}{2 i} \\
& =\Re\left[\left(x_{0}-i \frac{v_{0}}{\omega_{0}}\right) e^{i \omega_{0} t}\right] . \tag{1.3.6}
\end{align*}
$$

[^0]: ${ }^{5}$ While complex functions play an important role in quantum description of physical phenomena, their consideration at this point is not needed.
 ${ }^{6}$ The star superscript denotes complex conjugation, as in $(2+3 i)^{*}=2-3 i$.

