1.3.3 Geometric representation

A complex number $z=x+i y$ can be represented by a point with cartesian coordinates (x, y) in complex plane. The point can also be described by polar coordinates (r, ϕ). Consider the line from the the origin to the point (x, y). This line has length $r=\sqrt{x^{2}+y^{2}}$ (Pythagorean theorem), and makes angle ϕ to the x axis. The geometric definitions of trigonometric functions imply $\sin \phi=y / r, \cos \phi=x / r, \tan \phi=y / x$, and $\cot \phi=x / y$. Thus the relations between the two sets of coordinates are

$$
\left\{\begin{array}{l}
x=r \cos \phi \tag{1.3.7}\\
y=r \sin \phi
\end{array}, \Longleftrightarrow\left\{\begin{array}{l}
r=\sqrt{x^{2}+y^{2}} \\
\phi=\tan ^{-1}(y / x)
\end{array}\right.\right.
$$

Applying these rules to $e^{i \omega_{0} t}$, we see that this complex number has magnitude $r=1$, and is at the polar angle $\phi=\omega_{0} t$. As a function of time, this corresponds to a point that rotates on a unit circle in the complex plane with angular velocity ω_{0}.

Any complex number c can thus be written in terms of two real parameters in two ways, as

$$
c=c_{1}+i c_{2}, \quad \text { or } \quad c=A e^{i \phi_{0}} .
$$

Using the second form, the general solution to the SHO can also be written as

$$
x(t)=\Re\left[c e^{i \omega_{0} t}\right]=A \cos \left(\omega_{0} t+\phi_{0}\right),
$$

where A is the amplitude and ϕ_{0} is the phase. What is the amplitude and phase of the SHO solution we derived initially with parameters x_{0} and v_{0} ? In this case, the complex amplitude is

$$
c=\left(x_{0}-i \frac{v_{0}}{\omega_{0}}\right),
$$

whose magnitude and phase are given by

$$
A=\sqrt{x_{0}^{2}+v_{0}^{2} / \omega_{0}^{2}}, \quad \phi=-\tan ^{-1}\left(\frac{v_{0}}{x_{0} \omega_{0}}\right) .
$$

