Recap

- (i) Any second order ODE can be solved by using energy as a first integral, as

$$
\begin{equation*}
\ddot{x}=F(x), \quad \Longrightarrow \quad \frac{d x}{d t}= \pm \sqrt{2(E-V(x))}, \quad \Longrightarrow \quad \pm t=\int_{x_{0}}^{x(t)} \frac{d x^{\prime}}{2\left(E-V\left(x^{\prime}\right)\right)}, \tag{1.3.19}
\end{equation*}
$$

- (ii) Complex exponentials, solutions to the linear ODR $\ddot{x}=-\omega_{0}^{2} x$, follow the Euler relation

$$
\begin{equation*}
e^{i \omega_{0} t}=\cos \omega_{0} t+i \sin \omega_{0} t \tag{1.3.20}
\end{equation*}
$$

which can be used to switch between polar and cartesian representation, and to derive various trigonometric identities.

