
1.3 Second order ordinary differential equations

1.3.1 General solution

We observed in Eq. (1.1.18) that the solution to the second order differential equation,
ẍ = −ω2

0, describing simple harmonic oscillations, depends on two parameters x0 and v0.
It is easy to see from the series method we employed for this solution that the general
solution of an nth order ODE will depend on n parameters. However, the solution need not
be parametrized as in Eq. (1.1.18) in terms of the initial position and velocity (or higher
derivatives). An important example is provided by considering the more general ODE

ẍ = F (x) . (1.3.1)

As described in connection with Eq. (1.1.6), this equation can be integrated once (after
multiplication by ẋ) to give

ẋ2

2
+ V (x) = E, with V (x) = −

∫ x

dx′F (x′) . (1.3.2)

We have not explicitly indicated a lower cutoff on the integral defining V (x). Changing this
lower cutoff modifies V (x) by a constant that can be absorbed in the integration parameter
E = V (x0) + v20/2 for v0 = ẋ(t = 0).

Equation (1.3.2) can now be recast into a linear first order ODE and solved by the general
method presented earlier, as

dx

dt
= ±

√

2(E − V (x)), =⇒ ±t =

∫ x(t)

x0

dx′
√

2(E − V (x′))
, (1.3.3)

with the choice of sign dictated by relevant considerations, e.g. the sign of the initial velocity
v0 = ẋ(t = 0).

1.3.2 Complex exponentials and SHO

In Eq. (1.1.18) the general solution for simple harmonic oscillations was expressed as a sum
of trigonomic functions, sine and cosine. In the same way that a simple exponential et is the
solution of the simplest linear ODE ẋ = x, sine and cosine are natural solutions of ẍ = −x.
Knowing any number of derivatives still convert an exponential to itself, let us try out the
exponential x0eλt as a solution to the equation, ẍ+ ω2

0x = 0. Taking two derivatives yields

λ2x0e
λt = −ω2

0x0e
λt, ⇒ λ = ±iω0, (1.3.4)

where ω0 is a real number, while i stands for the square root of -1 (i =
√
−1), such that

i2 = −1, i3 = −i, i4 = +1, etc. Note that some texts use j to denote
√
−1, which can be

confusing. It is easily checked that the sum of two such exponentials is also a solution, and
thus the most general solution can thus be written as

x(t) = c+e
iω0t + c−e

−iω0t,
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where c+ and c− can in fact be complex numbers. This may appear strange, since each
complex number, z = a + ib, has both a real and imaginary part, giving the impression
that the general solution depends on 4 independent parameters. The resolution is that for
classical5 physical problems we are only interested in real solutions to the problem, and must
choose c+ = c∗− = c,6 and the solution is then given by the real part as

x(t) = $
[

ceiω0t
]

.

To gain better understanding of the complex exponential, let us examine its power series

eiω0t = 1 + iω0t+
(iω0t)2

2!
+

(iω0t)3

3!
+

(iω0t)4

4!
+ · · ·

=

[

1−
(ω0t)2

2!
+

(ω0t)4

4!
− · · ·

]

+ i

[

ω0t−
(ω0t)3

3!
+ · · ·

]

= cos(ω0t) + i sin(ω0t), (1.3.5)

where we have used the power series for sine and cosine. This is the famous Euler formula.
From the the above equation, and its complex conjugate

eiω0t = cos(ω0t) + i sin(ω0t), e−iω0t = cos(ω0t)− i sin(ω0t),

we obtain

cos(ω0t) =
eiω0t + e−iω0t

2
, sin(ω0t) =

eiω0t − e−iω0t

2i
.

Hence our original solution can be written as

x(t) = x0 cos(ω0t) +
v0
ω0

sin(ω0t)

= x0
eiω0t + e−iω0t

2
+

v0
ω0

eiω0t − e−iω0t

2i

= $
[(

x0 − i
v0
ω0

)

eiω0t

]

. (1.3.6)

1.3.3 Geometric representation

A complex number z = x+ iy can be represented by a point with cartesian coordinates (x, y)
in complex plane. The point can also be described by polar coordinates (r,φ). Consider the
line from the the origin to the point (x, y). This line has length r =

√

x2 + y2 (Pythagorean
theorem), and makes angle φ to the x axis. The geometric definitions of trigonometric
functions imply sinφ = y/r, cosφ = x/r, tanφ = y/x, and cotφ = x/y. Thus the relations
between the two sets of coordinates are

{

x = r cosφ

y = r sin φ
, ⇐⇒

{

r =
√

x2 + y2

φ = tan−1(y/x)
. (1.3.7)

5While complex functions play an important role in quantum description of physical phenomena, their
consideration at this point is not needed.

6The star superscript denotes complex conjugation, as in (2 + 3i)∗ = 2− 3i.
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Applying these rules to eiω0t, we see that this complex number has magnitude r = 1, and is
at the polar angle φ = ω0t. As a function of time, this corresponds to a point that rotates
on a unit circle in the complex plane with angular velocity ω0.

Any complex number c can thus be written in terms of two real parameters in two ways,
as

c = c1 + ic2, or c = Aeiφ0 .

Using the second form, the general solution to the SHO can also be written as

x(t) = $
[

ceiω0t
]

= A cos (ω0t + φ0) ,

where A is the amplitude and φ0 is the phase. What is the amplitude and phase of the SHO
solution we derived initially with parameters x0 and v0? In this case, the complex amplitude
is

c =

(

x0 − i
v0
ω0

)

,

whose magnitude and phase are given by

A =
√

x2
0 + v20/ω

2
0, φ = − tan−1

(

v0
x0ω0

)

.

1.3.4 Addition of complex numbers & beats

Complex exponentials are very useful for proving trigonometric identities. For example,
noting that eia × eib = ei(a+b), and employing eia = cos a+ i sin a, leads to

eia × eib = (cos a+ i sin a)× (cos b+ i sin b)
= (cos a cos b− sin a sin b) + i(cos a sin b+ cos b sin a)
= ei(a+b) = cos(a + b) + i sin(a+ b).

(1.3.8)

Comparing the real and imaginary parts on second and third rows of above equation, we get
the identities

cos(a+ b) = cos a cos b− sin a sin b, and sin(a+ b) = cos a sin b+ sin a cos b. (1.3.9)

Noting that cosine is even in its argument, while sine is odd, changing the sign of b in the
above equation leads to

cos(a− b) = cos a cos b+ sin a sin b, and sin(a− b) = − cos a sin b+ sin a cos b. (1.3.10)

Finally, adding the two sets of equations leads to the identities

cos(a+ b) + cos(a− b) = 2 cos a cos b, and sin(a+ b) + sin(a− b) = 2 sin a cos b. (1.3.11)

In many physical situations SHO signals are superposed on passing through a medium,
such as in electromagnetic waves traversing vacuum, or sound waves going through air.
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An interesting example is provided by the sound of two tuning forks with slightly different
frequencies. In addition to the tone for the average frequency, the ear hears an alternating
beating at a much lower frequency. Assuming that the amplitudes coming from the two
tuning forks are the same, the total signal can be constructed as

s(t) = A [cos (ω1t+ φ1) + cos (ω2t+ φ2)] .

Using a version of the above identities above, cos a + cos b = 2 cos
(

a−b
2

)

cos
(

a+b
2

)

, we find

s(t) = 2A cos

(

ω1 − ω2

2
t+

φ1 − φ2

2

)

cos

(

ω1 + ω2

2
t +

φ1 + φ2

2

)

,

i.e. the net signal resembles simple harmonic oscillations at the average frequency (the second
cosine), but with an amplitude that is modulated at the difference in frequencies (the first
cosine).

1.3.5 Hyperbolic trig–functions

While complex exponentials are solutions of the ODE ẍ = −ω2
0x, solutions to ẍ = λ2x are

sums of real exponentials proportional to eλt and e−λt. As in Eq. (1.3.5), we can rewrite the
sum in terms of hyperbolic sine and cosine, defined by

cosh(λt) =
eλt + e−λt

2
, and sinh(λt) =

eλt − e−λt

2
. (1.3.12)

The advantage of the above combinations is that (like their trigonometric counterparts)
they are respectively symmetric and anti-symmetric, under change of sign of their argu-
ments. Finding solutions that respect underlying symmetries of a physical problem is always
important and something that we shall return to repeatedly.

The hyperbolic analogs of tangent (and cotangent) are similarly constructed as

tanh a =
sinh a

cosh a
=

ea − e−a

ea + e−a
=

e2a − 1

e2a + 1
, and coth a =

1

tanh a
. (1.3.13)

Note the identities

cosh2 a− sinh2 a = 1, =⇒ 1− tanh2 a =
1

cosh2 a
. (1.3.14)

While sine (sinh) and cosine (cosh) are solutions to ẍ = −a2x (ẍ = +a2x), it is instructive
to learn ODEs satisfies by tangent functions. Towards this end, note the following

x = tan t =
sin t

cos t
, ⇒ ẋ =

cos2 t+ sin2 t

cos2 t
= 1 + x2 , (1.3.15)

and

x = tanh t =
sinh t

cosh t
, ⇒ ẋ =

cosh2 t− sin2 t

cosh2 t
= 1− x2 , (1.3.16)
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Equations (1.3.15) and (1.3.16) are indicative of the type of (nonlinear) first order ODE
whose solution can be expressed in terms of tangent functions.

Corresponding second order ODE’s are obtained by taking another derivative, as

x = tan t, ⇒ ẋ = 1 + x2, ⇒ ẍ = 2xẋ = 2x(1 + x2) , (1.3.17)

and
x = tanh t, ⇒ ẋ = 1− x2, ⇒ ẍ = −2xẋ = −2x(1− x2) . (1.3.18)

Equation ẍ = 2xẋ = 2x(1−x2) is particularly interesting as it describes motion of a particle
(of unit mass) in a potential V (x) = +x2−x4/2. This is a symmetric potential with maxima
at x = ±1. The solution x(t) = tanh t describes a particle that starts close to x = −1 at
long times in the past (t → −∞), slides down to reach the minimum at x = 0 at t = 0, and
then climbs the barrier towards x = +1, with just enough energy to reach this maximum
at t → ∞. Such solutions connecting one extremum to another appear in various physics
contexts, as solitons in field theory, or domain walls in magnets.

Recap

• (i) Any second order ODE can be solved by using energy as a first integral, as

ẍ = F (x), =⇒
dx

dt
= ±

√

2(E − V (x)), =⇒ ±t =

∫ x(t)

x0

dx′

2(E − V (x′))
,

(1.3.19)

• (ii) Complex exponentials, solutions to the linear ODR ẍ = −ω2
0x, follow the Euler

relation
eiω0t = cosω0t+ i sinω0t , (1.3.20)

which can be used to switch between polar and cartesian representation, and to derive
various trigonometric identities.
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