1.4 General linear ordinary differential equations

1.4.1 General solution

The general form of an m th order, linear, homogeneous ${ }^{7}$, differential equation is

$$
\begin{equation*}
a_{m} \frac{d^{m} x}{d t^{m}}+a_{m-1} \frac{d^{m-1} x}{d t^{m-1}}+\cdots+a_{1} \frac{d x}{d t}+a_{0} x=0 \tag{1.4.1}
\end{equation*}
$$

where $\left\{a_{m}, \cdots, a_{0}\right\}$ are fixed parameters. Given our past success with the exponential function, we can guess that a particular solution to this equation should be of the form $x(t)=c e^{\lambda t}$. It is then easy to check that each subsequent derivative multiplies $x(t)$ by a factor λ, such that

$$
\begin{equation*}
\frac{d^{m} x}{d t^{m}}=\lambda^{m} x(t) \tag{1.4.2}
\end{equation*}
$$

Substituting this result into the differential equation gives

$$
\begin{equation*}
\left[a_{m} \lambda^{m}+a_{m-1} \lambda^{m-1}+\cdots+a_{1} \lambda+a_{0}\right] x(t)=0 \tag{1.4.3}
\end{equation*}
$$

Allowed values of λ are obtained by solving for where the expression in the square brackets is zero. In fact, this m th order algebraic equation has m solutions, which we shall label $\left\{\lambda_{1}, \cdots, \lambda_{m}\right\}$. Any of these values gives an acceptable particular solution.

An important property of homogeneous linear ODEs is that a general solution obtained by adding the particular solutions. It is valuable to remember that this superposition principle applies to linear systems only, and fails if any non-linearity is present. The most general solution of Eq. (1.4.1) is thus given by

$$
\begin{equation*}
x(t)=c_{1} e^{\lambda_{1} t}+\cdots+c_{m} e^{\lambda_{m} t} \tag{1.4.4}
\end{equation*}
$$

As anticipated, this solution depends on m independent parameters $\left\{c_{1}, \cdots, c_{m}\right\}$. In the description of most physical systems, the parameters $\left\{a_{m}, \cdots, a_{0}\right\}$ describing the ODE, and hence the coefficients in the polynomial equation

$$
\begin{equation*}
a_{m} \lambda^{m}+a_{m-1} \lambda^{m-1}+\cdots+a_{1} \lambda+a_{0}=0 \tag{1.4.5}
\end{equation*}
$$

are real numbers. This implies that if λ_{i} is a particular solution of this equation, so is its complex conjugate λ_{i}^{*}. Thus solutions to the equation are either real, or appear in complex conjugate pairs $a \pm i \omega$. The latter type of solutions can be combined to provide real solutions (such as $e^{a t} \sin (\omega t)$) that oscillate with frequency ω, and grow or decay exponentially in time. The damped harmonic motion discussed next provides an important prototype of such behavior.

[^0]
[^0]: ${ }^{7}$ For inhomogeneous equations, to be discussed later, the right hand side is not zero.

