1.4.3 Forms of Damped motion

1. Over-damped motion: For v > 2w, (@ < 1/2), the solutions for A are real, and can
be written as
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Ai:—%:l:s, where 5= Vz—wg:%m—zmg?. (1.4.11)

Note that s is a real number, with A, and A_ both negative. Each choice of A\ thus results

in an exponentially damped solution, eventually decaying to zero at large times. For this

reason, the over-damped behavior is also called dead beat. Naturally, the very long time
behavior is controlled by the slower of the two exponential decays corresponding to A .

As a specific example, consider a system launched from the equilibrium point x = 0 at

time ¢ = 0, with the initial velocity (¢ = 0) = vy. The general solution to the motion is

obtained by the superposition of the two exponentials, as
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From z(0) = 0, we get c_ = —c,, while
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#(0) = vo = ¢4 [—§—s+§+s] A (1.4.13)

The full solution is thus given by

2sinh ( v2/4 — w%t)
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2. Critical damping: At the special value of Q) = wy/y = 1/2 the two solutions for A
merge to the single value of —v/2. However, we expect that the second order differential
equation should have two independent solutions. We can check that z5(t) = te™%/? is also a
solution:”

() = Vo (6—gt+st _ e—gt—st> = ype /2 sinh(st) — yoe™?
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Substituting into the original solution, and using w3 = ~?/4, confirms that z, is indeed a
solution.
The general solution in this critically damped case has thus the form

z(t) = e % (¢; + eat) . (1.4.16)

9Quite generally when two or more exponents of trial exponential solutions to linear differential equations
become equal, we can find new solutions by multiplying the exponentials by powers of ¢.



For a solution that starts at the origin for ¢t = 0, we must have ¢; = 0. If the initial velocity
is vp, we thus obtain
z(t) = vote 2. (1.4.17)

This solution goes through a maximum at time ¢,,,x = 2/ (from © = 0), and then decays
to the origin. For a fixed v, as wy is increased from zero, the fastest decay time is obtained
at critical damping.

3. Under-damped motion: For wy > 7/2 (Q > 1/2), the solutions for A are complez, and
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The general solution to the motion is obtained by the superposition of exponentials, as

As noted earlier the two exponential solutions are complex conjugates, and a real solution
for z(t) can be obtained by setting c_ = ¢!, and written as

xz(t) =R [ce_%t”‘:’t} = Ae 2 cos(wt + <j~>) , (1.4.19)

where in the last step, we have assumed a complex number ¢ = fleiq;, with amplitude A, and
phase ¢.
This solution has the following properties:

e Because of the imaginary exponential, it has an oscillatory character, with a period
T = 27/&. Introduction of damping (finite 7) reduces the frequency from wg. The
period thus goes up, eventually diverging to infinity as v — 2wy.

e The amplitude of oscillations decays with time as e=7*/2. The characteristic decay time
is proportional to 1/, and is independent of wy.

e Over the characteristic decay time 7 ~ 1/7, the number of oscillations N ~ 27 /@01 ~
/@ is roughly set by @Q: A high quality oscillator executes many oscillations before
dying away, while a low quality one has few oscillations.

The phase of the solution depends on the initial conditions. For example, starting with
z(t=0)=0and £(t = 0) = vy gives

in (@t
(t) = er_yt/gsmiiw) . (1.4.20)

(This solution is the analytic continuation of that obtained in the over-damped case, with
s — iw.)



