
1.4.7 Transients

The steady–state solution is reached after all knowledge of the initial state of the system is
lost. To obtain the full solution at all times, we incorporate the initial conditions as follows:
First, note that adding any solution of the homogeneous differential equation (i.e. with no
forcing) to the steady–state result, gives a new solution for the forced equation. We thus
arrive at the following principle for inhomogeneous linear equations: The general solution
for the inhomogeneous linear equation is any particular (e.g. steady–state) solution of the
inhomogeneous equation plus the general solution to the homogeneous equation.

Going back to
ẍ+ γẋ+ ω2

0x = fω cos(ωt) = !
[

fωe
iωt
]

, (1.4.33)

we can write the most general solution as

x(t) = A cos (ωt+ φ) + Ãe−γt/2 cos
(

ω̃t + φ̃
)

. (1.4.34)

The first term is the steady–state solution oscillating at the forcing frequency of ω, with
A and φ fixed by the forcing function as in Eqs.(1.4.27) and (1.4.28). The second term is
the general solution to the homogeneous equation, which depends on two as yet unknown
parameters Ã and φ̃. Its frequency is ω̃ = ω0

√

1−Q−2/4, the natural oscillation frequency
of the (free) system. The second term describes transients which eventually decay to zero,
influencing only the initial behavior.

The two unknown parameters in the transient can be determined by specifying two initial
conditions. For simplicity, let us assume that the system starts at rest, with x(t = 0) = ẋ(t =
0) = 0. Using complex exponential, we have







x(t) = !
[

Ceiωt + C̃e(iω̃−γ/2)t
]

ẋ(t) = !
[

iωCeiωt + (iω̃ − γ/2) C̃e(iω̃−γ/2)t
] . (1.4.35)

The first equation at t = 0 yields

0 = !
[

C + C̃
]

= C" + C̃", ⇒ C̃" = −C" = −A cosφ , (1.4.36)

where we have explicitly written the complex coefficients in terms of their real and imaginary
parts, as C = C"+iC#. The imaginary part of C̃ is obtained from the second initial condition

0 = !
[

iω (C" + iC#) +
(

iω̃ −
γ

2

)(

C̃" + iC̃#

)]

= −ωC# − ω̃C̃# −
γ

2
C̃" , (1.4.37)

as
C̃# = −

ω

ω̃
C# +

γ

2ω̃
C" = −A

(ω

ω̃
sinφ−

γ

2ω̃
cosφ

)

. (1.4.38)

The full solution can thus be written as

x(t) = A cos (ωt+ φ)− Ae−γt/2
[

cosφ cos (ω̃t)−
(ω

ω̃
sin φ−

γ

2ω̃
cosφ

)

sin (ω̃t)
]

. (1.4.39)

We can make the following observations on this solution:



• The transients decay to zero after a time τ ∝ γ−1. During this time, a high quality sys-
tem may have many oscillations, and the superposition of signals can lead to patterns
that appear irregular.

• The initial amplitude of the transient is of the same order as that of the steady state,
and in particular Ã → A as γ → 0. This can lead situations where the solution at
first becomes larger than its final value (known as overshoot) before decreasing to its
steady state value.

• At driving frequencies close to the natural frequency of the system, the initial transients
can lead to beats. In particular, for γ → 0, we have

x(t) = A [cos (ωt)− cos (ω̃t)] = 2A sin

(

ω − ω̃

2
t

)

cos

(

ω + ω̃

2
t

)

,

i.e. a beating frequency of ω − ω̃.


