
1.4 General linear ordinary differential equations

1.4.1 General solution

The general form of an mth order, linear, homogeneous7, differential equation is

am
dmx

dtm
+ am−1

dm−1x

dtm−1
+ · · ·+ a1

dx

dt
+ a0x = 0 , (1.4.1)

where {am, · · · , a0} are fixed parameters. Given our past success with the exponential func-
tion, we can guess that a particular solution to this equation should be of the form x(t) = ceλt.
It is then easy to check that each subsequent derivative multiplies x(t) by a factor λ, such
that

dmx

dtm
= λmx(t) . (1.4.2)

Substituting this result into the differential equation gives

[

amλ
m + am−1λ

m−1 + · · ·+ a1λ+ a0
]

x(t) = 0 . (1.4.3)

Allowed values of λ are obtained by solving for where the expression in the square brackets
is zero. In fact, this mth order algebraic equation has m solutions, which we shall label
{λ1, · · · ,λm}. Any of these values gives an acceptable particular solution.

An important property of homogeneous linear ODEs is that a general solution obtained by
adding the particular solutions. It is valuable to remember that this superposition principle
applies to linear systems only, and fails if any non-linearity is present. The most general
solution of Eq. (1.4.1) is thus given by

x(t) = c1e
λ1t + · · ·+ cme

λmt . (1.4.4)

As anticipated, this solution depends on m independent parameters {c1, · · · , cm}. In the
description of most physical systems, the parameters {am, · · · , a0} describing the ODE, and
hence the coefficients in the polynomial equation

amλ
m + am−1λ

m−1 + · · ·+ a1λ+ a0 = 0 (1.4.5)

are real numbers. This implies that if λi is a particular solution of this equation, so is its
complex conjugate λ∗i . Thus solutions to the equation are either real, or appear in complex
conjugate pairs a±iω. The latter type of solutions can be combined to provide real solutions
(such as eat sin(ωt)) that oscillate with frequency ω, and grow or decay exponentially in
time. The damped harmonic motion discussed next provides an important prototype of such
behavior.

7For inhomogeneous equations, to be discussed later, the right hand side is not zero.
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1.4.2 General Damped Harmonic Motion

We noted earlier that if variations in time do not change (conserve) the ‘energy’ E =
ẋ2/2 + V (x), the resulting motion is governed by the second order ODE, ẍ + V ′(x) = 0,
which satisfies time reversal symmetry. Damping is, however, present in mechanical sys-
tems, causing irreversible loss of energy. Friction, air drag, viscosity, are all forms of energy
dissipation, and the resulting energy loss is in principle a complex function of the motion
x(t). We again appeal to instantaneity and continuity to postulate that for continuous mo-
tion dE/dt is a function of velocity ẋ, whose series expansion must start with a lowest order
term proportional to −ẋ2. (A constant term would cause continuous decrease of energy in
the absence of motion, while a linear term can lead to increase of energy depending on the
sign of ẋ.) The loss of energy is then expressed as8

−γẋ2 =
dE

dt
=

d

dt

(

ẋ2

2
+ V (x)

)

= ẋ [ẍ+ V ′(x)] , ⇒ ẍ = −V ′(x)− γẋ. (1.4.6)

The last equation could have been also obtained by equating the net force to the accelera-
tion, assuming a friction force Fv = bẋ. Small amplitude deformations, approximated as in
Eq. (1.1.6), in the presence of damping, are now described by the linear differential equation

mẍ+ bẋ+Kx = 0 , (1.4.7)

which can again be brought to the more standard form

ẍ+ γẋ+ ω2
0x = 0 , (1.4.8)

by setting γ = b/m, and ω2
0 = K/m.

Following the general scheme, we can seek particular solutions to the above equation by
trying the exponential form x = ceλt. Since ẋ = λx and ẍ = λ2x, λ must be a solution to
the quadratic equation

λ2 + γλ+ ω2
0 = 0 . (1.4.9)

The two solutions to this equation are

λ± = −
γ

2
±
√

γ2

4
− ω2

0 . (1.4.10)

The character of the solutions changes dramatically depending on whether the quantity
under the square–root is positive or negative. This in turn is controlled by the ratio

Q =
ω0

γ
,

which is commonly referred to as the quality factor. We shall describe the three classes of
possible solutions in turn.

8Recall that according to the chain rule in Eq. (1.1.23), d
dt
V (x) = dV

dx
dx
dt
.
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1.4.3 Forms of Damped Motion

1. Over-damped motion: For γ > 2ω0 (Q < 1/2), the solutions for λ are real, and can
be written as

λ± = −
γ

2
± s, where s =

√

γ2

4
− ω2

0 =
γ

2

√

1− 4Q2 . (1.4.11)

Note that s is a real number, with λ+ and λ− both negative. Each choice of λ thus results
in an exponentially damped solution, eventually decaying to zero at large times. For this
reason, the over-damped behavior is also called dead beat. Naturally, the very long time
behavior is controlled by the slower of the two exponential decays corresponding to λ+.

As a specific example, consider a system launched from the equilibrium point x = 0 at
time t = 0, with the initial velocity ẋ(t = 0) = v0. The general solution to the motion is
obtained by the superposition of the two exponentials, as







x(t) = c+e
− γ

2
t+st + c−e

− γ
2
t−st,

ẋ(t) = c+
(

−
γ

2
+ s
)

e−
γ
2
t+st + c−

(

−
γ

2
− s
)

e−
γ
2
t−st.

(1.4.12)

From x(0) = 0, we get c− = −c+, while

ẋ(0) = v0 = c+
[

−
γ

2
− s+

γ

2
+ s
]

= 2c+s, ⇒ c+ =
v0
2s

. (1.4.13)

The full solution is thus given by

x(t) =
v0
2s

(

e−
γ
2
t+st − e−

γ
2
t−st
)

= v0e
−γt/2 sinh(st)

s
= v0e

−γt/2
sinh

(

√

γ2/4− ω2
0 t
)

√

γ2/4− ω2
0

.

(1.4.14)
2. Critical damping: At the special value of Q = ω0/γ = 1/2 the two solutions for λ
merge to the single value of −γ/2. However, we expect that the second order differential
equation should have two independent solutions. We can check that x2(t) = te−γt/2 is also a
solution:9

x2(t) = e−γt/2t,⇒ ẋ2(t) = e−γt/2
(

−
γ

2
t + 1

)

,⇒ ẍ2(t) = e−γt/2

(

γ2

4
t−

γ

2
−
γ

2

)

.

(1.4.15)
Substituting into the original solution, and using ω2

0 = γ2/4, confirms that x2 is indeed a
solution.

The general solution in this critically damped case has thus the form

x(t) = e−γt/2 (c1 + c2t) . (1.4.16)

9Quite generally when two or more exponents of trial exponential solutions to linear differential equations
become equal, we can find new solutions by multiplying the exponentials by powers of t.
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For a solution that starts at the origin for t = 0, we must have c1 = 0. If the initial velocity
is v0, we thus obtain

x(t) = v0te
−γt/2 . (1.4.17)

This solution goes through a maximum at time tmax = 2/γ (from ẋ = 0), and then decays
to the origin. For a fixed γ, as ω0 is increased from zero, the fastest decay time is obtained
at critical damping.
3. Under-damped motion: For ω0 > γ/2 (Q > 1/2), the solutions for λ are complex, and
given by

λ± = −
γ

2
± iω̃, where ω̃ =

√

ω2
0 −

γ2

4
= ω0

√

1−
1

4Q2
. (1.4.18)

The general solution to the motion is obtained by the superposition of exponentials, as

x(t) = c+e
− γ

2
t+iω̃t + c−e

− γ
2
t−iω̃t.

As noted earlier the two exponential solutions are complex conjugates, and a real solution
for x(t) can be obtained by setting c− = c∗+, and written as

x(t) = #
[

ce−
γ
2
t+iω̃t

]

= Ãe−γt/2 cos(ω̃t+ φ̃) , (1.4.19)

where in the last step, we have assumed a complex number c = Ãeiφ̃, with amplitude Ã, and
phase φ̃.

This solution has the following properties:

• Because of the imaginary exponential, it has an oscillatory character, with a period
T = 2π/ω̃. Introduction of damping (finite γ) reduces the frequency from ω0. The
period thus goes up, eventually diverging to infinity as γ → 2ω0.

• The amplitude of oscillations decays with time as e−γt/2. The characteristic decay time
is proportional to 1/γ, and is independent of ω0.

• Over the characteristic decay time τ ∼ 1/γ, the number of oscillations N ∼ 2π/ω̃τ ∼
γ/ω̃ is roughly set by Q: A high quality oscillator executes many oscillations before
dying away, while a low quality one has few oscillations.

The phase of the solution depends on the initial conditions. For example, starting with
x(t = 0) = 0 and ẋ(t = 0) = v0 gives

x(t) = v0e
−γt/2 sin(ω̃t)

ω̃
. (1.4.20)

(This solution is the analytic continuation of that obtained in the over-damped case, with
s → iω̃.)
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1.4.4 Inhomogeneous linear ODEs

The inhomogeneous variant of the nth order, linear equation in Eq. (1.4.1) has a non-zero
right hand side, as in

L[x(t)] ≡ an
dnx

dtn
+ an−1

dn−1x

dtn−1
+ · · ·+ a1

dx

dt
+ a0x = f(t) . (1.4.21)

Let us introduce the symbol L[φ(t)] to indicate linear (differential) operations on any function
φ(t), generalizing simple multiplication by a constant as the simplest linear operation.

The linearity of the equation again leads to a superposition principle for solutions of
the inhomogeneous equation. Suppose that we have obtained solutions x1(t) and x2(t) in
the presence of forces f1(t) and f2(t), i.e. L[x1(t)] = f1(t) and L[x2(t)] = f2(t). Then the
solution for a superposition of forces is obtained simply by superposition of solutions, since

L[c1x1 + c2x2] = c1L[x1] + c2L[x2] = c1f1 + c2f2 . (1.4.22)

Thus if we find a specific class of forcing functions whose solutions are simple, we can find
many more solutions by superposition. In fact, such a class of functions are conveniently
provided by sin(ωt) and cos(ωt), as we shall see shortly. Furthermore, according to the
Fourier theorem, which we shall encounter later on, any function f(t) can be written as a
superposition of sines and cosines. Thus for a general forcing function f(t), we should first
decompose it into a so-called Fourier series, and then superpose the solutions in response to
the Fourier components. The simplest case of forced damped harmonic motion is discussed
next.

1.4.5 Steady–state solutions to forced harmonic motion

The generalized equation of motion of a damped harmonic oscillator, subject to an external
time dependent force F (t) = mf(t), is

L[x(t)] ≡ ẍ+ γẋ+ ω2
0 = f(t) . (1.4.23)

We shall look for the solution in response to a force at a single frequency ω. Without
loss of generality we can write such a force as fω cos(ωt); any mixture of sines and cosines
corresponds to a simple shift in t. The complex exponential notation is very useful in this
case, and we shall write the starting equation as

ẍ+ γẋ+ ω2
0x = #

[

fωe
iωt
]

. (1.4.24)

It is useful to search for a so-called steady–state solution reached after sufficiently long time.
Such a solution is likely to have the same period as the external force, and we thus guess
(and verify) that it has the form xω = # [Ceiωt], where C is a complex number. Substituting
this trial solution in the above equation yields

#
[(

−ω2 + iγω + ω2
0

)

Ceiωt
]

= #
[

fωe
iωt
]

. (1.4.25)
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The linear operator on the left hand side indeed preserves the complex exponential form of
the function, implying that the solution is correct, provided that we choose

C =
fω

ω2
0 − ω2 + iγω

= fω

[

ω2
0 − ω2

(ω2
0 − ω2)2 + γ2ω2

− i
γω

(ω2
0 − ω2)2 + γ2ω2

]

≡ Aeiφ = A [cosφ+ i sinφ] . (1.4.26)

The steady–state solution can thus be written as xω = A cos(ωt+φ), where the amplitude
is

A =
fω

√

(ω2
0 − ω2)2 + γ2ω2

=
Qfω
ωω0

1
√

Q2 (ω0/ω − ω/ω0)
2 + 1

. (1.4.27)

The amplitude goes from the static result fω/ω2
0 at ω = 0, to fω/ω2 as ω → ∞. In between it

has a maximum value of close to Qfω/ω2
0 at ω ≈ ω0. (The precise location of the maximum

is in fact somewhat smaller than ω0.) The sharpness of the peak is determined by Q, with
larger Q giving a narrower and larger maximum. The phase φ is a solution to 10

φ = − tan−1

(

γω

ω2
0 − ω2

)

= − tan−1

(

Q−1

ω0/ω − ω/ω0

)

. (1.4.28)

1.4.6 Resonance

The above results indicate that the oscillator responds with the largest amplitude at a
frequency close to its natural, or resonance, frequency. The highest amplitudes are achieved
for high quality systems, although in such cases the forcing frequency has to be carefully
tuned since the resonant response occurs in a very narrow frequency range.

The steady–state amplitude can be large, but is finite, as long as γ )= 0 and ω )= ω0. For
γ = 0, the general solution presented earlier becomes infinite for ω = ω0, and is therefore
inapplicable. We go back to the differential equation, which in this limit reads

ẍ+ ω2
0x = #

[

fω0
eiω0t

]

. (1.4.29)

Since the simple complex exponential leads to infinities, as in Eq.(1.4.15) we multiply the
exponential by a power of t and use as trial solution

x(t) = #
[

cteiω0t
]

, with ẋ(t) = #
[

c(1 + iω0t)e
iω0t
]

, and ẍ(t) = #
[

c(2iω0 − ω2
0t)e

iω0t
]

.
(1.4.30)

Substituting into the equation of motion confirms that this is indeed a solution, provided
that we choose

2iω0c = fω0
, ⇒ c = −i

fω0

2ω0
. (1.4.31)

10Note that because of the periodic nature of tanφ, there is some ambiguity to choice of angle. However,
physical reasoning suggests that the oscillations should lag the force, rather than anticipate it. Thus the
appropriate phase angle goes from goes from 0 at ω = 0 to −π/2 at ω = ω0, and continues to −π as ω → ∞.
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The full solution at resonance is thus

xω0
= #

[

−i
fω0

2ω0
teiω0t

]

=
fω0

2ω0
t cos(ω0t− π/2) . (1.4.32)

The resonant solution has an amplitude that grows linearly with time. This linear growth
will eventually be stopped by damping, or other physical constraints. The phase of this
solution lags the force by π/2, but note that the velocity ẋ(t) ≈ fω0

t cos(ω0t)/2 is in phase
with the external force, facilitating the input of energy into the system, as discussed next.

1.4.7 Transients

The steady–state solution is reached after all knowledge of the initial state of the system is
lost. To obtain the full solution at all times, we incorporate the initial conditions as follows:
First, note that adding any solution of the homogeneous differential equation (i.e. with no
forcing) to the steady–state result, gives a new solution for the forced equation. We thus
arrive at the following principle for inhomogeneous linear equations: The general solution
for the inhomogeneous linear equation is any particular (e.g. steady–state) solution of the
inhomogeneous equation plus the general solution to the homogeneous equation.

Going back to
ẍ+ γẋ+ ω2

0x = fω cos(ωt) = #
[

fωe
iωt
]

, (1.4.33)

we can write the most general solution as

x(t) = A cos (ωt+ φ) + Ãe−γt/2 cos
(

ω̃t + φ̃
)

. (1.4.34)

The first term is the steady–state solution oscillating at the forcing frequency of ω, with
A and φ fixed by the forcing function as in Eqs.(1.4.27) and (1.4.28). The second term is
the general solution to the homogeneous equation, which depends on two as yet unknown
parameters Ã and φ̃. Its frequency is ω̃ = ω0

√

1−Q−2/4, the natural oscillation frequency
of the (free) system. The second term describes transients which eventually decay to zero,
influencing only the initial behavior.

The two unknown parameters in the transient can be determined by specifying two initial
conditions. For simplicity, let us assume that the system starts at rest, with x(t = 0) = ẋ(t =
0) = 0. Using complex exponential, we have







x(t) = #
[

Ceiωt + C̃e(iω̃−γ/2)t
]

ẋ(t) = #
[

iωCeiωt + (iω̃ − γ/2) C̃e(iω̃−γ/2)t
] . (1.4.35)

The first equation at t = 0 yields

0 = #
[

C + C̃
]

= C$ + C̃$, ⇒ C̃$ = −C$ = −A cosφ , (1.4.36)
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where we have explicitly written the complex coefficients in terms of their real and imaginary
parts, as C = C$+iC%. The imaginary part of C̃ is obtained from the second initial condition

0 = #
[

iω (C$ + iC%) +
(

iω̃ −
γ

2

)(

C̃$ + iC̃%

)]

= −ωC% − ω̃C̃% −
γ

2
C̃$ , (1.4.37)

as
C̃% = −

ω

ω̃
C% +

γ

2ω̃
C$ = −A

(ω

ω̃
sinφ−

γ

2ω̃
cosφ

)

. (1.4.38)

The full solution can thus be written as

x(t) = A cos (ωt+ φ)− Ae−γt/2
[

cosφ cos (ω̃t)−
(ω

ω̃
sin φ−

γ

2ω̃
cosφ

)

sin (ω̃t)
]

. (1.4.39)

We can make the following observations on this solution:

• The transients decay to zero after a time τ ∝ γ−1. During this time, a high quality sys-
tem may have many oscillations, and the superposition of signals can lead to patterns
that appear irregular.

• The initial amplitude of the transient is of the same order as that of the steady state,
and in particular Ã → A as γ → 0. This can lead situations where the solution at
first becomes larger than its final value (known as overshoot) before decreasing to its
steady state value.

• At driving frequencies close to the natural frequency of the system, the initial transients
can lead to beats. In particular, for γ → 0, we have

x(t) = A [cos (ωt)− cos (ω̃t)] = 2A sin

(

ω − ω̃

2
t

)

cos

(

ω + ω̃

2
t

)

,

i.e. a beating frequency of ω − ω̃.

Recap
' Damped oscillations are described by the linear differential equation ẍ+ γẋ+ ω2

0x = 0.
' The character of the solution depends on the quality factor Q = ω0/γ.
' Subject to x(t = 0) = 0 and ẋ(t = 0) = v0, solutions are:

1. Over-damped motion: x(t) = v0e−γt/2[sinh (s t) /s], with s =
√

γ2/4− ω2
0

2. Critical damping: x(t) = v0te−γt/2.

3. Under-damped motion: x(t) = v0e−γt/2[sin(ω̃t)/ω̃], with ω̃ = ω0

√

1− 1/(4Q2).

' Harmonically forced, damped linear oscillations satisfy

ẍ+ γẋ+ ω2
0x = fω cos(ωt) = #

[

fωe
iωt
]

, with fω = Fω/m.
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' Steady–state solutions to this equation can be written as

x(t) = #
[

Ceiωt
]

= A cos (ωt+ φ) ,

with

C =
f0

ω2
0 − ω2 + iγω

= f0

[

ω2
0 − ω2

(ω2
0 − ω2)2 + γ2ω2

− i
γω

(ω2
0 − ω2)2 + γ2ω2

]

,

giving (with Q = ω0/γ)

A =
Qf0
ωω0

1
√

Q2 (ω0/ω − ω/ω0)
2 + 1

, and φ = − tan−1

(

Q−1

ω0/ω − ω/ω0

)

.
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