
2.1.3 Beyond gradient descent

The reality of the eigenvalues in Eq. (2.1.20) is a consequence of the symmetry of the matrix,
which is an inevitable consequence of gradient descent in a quadratic potential. However,
even for more complicated potentials gradient descent (that F1 =

∂V
∂x1

and F2 =
∂V
∂x2
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since mixed partial derivatives can be taken in any order. If so, we may ask what is the
outcome of the more general dynamics that does not satisfy the above constraint, e.g. for
linearized equations such as in Eq. (2.1.5), where the matrix
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is not symmetric, f12 "= f21?
As example, let us consider the following set of equations
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Clearly this systems of two coupled first order equations is simply the damped harmonic
oscillator of Eq. (1.4.8) in disguise. The eigenvalues of the asymmetric matrix are given
by Eq. (1.4.10). Notably, for γ < 2ω0 the eigenvalues have an imaginary part indicating
oscillatory behavior. In the limit γ = 0, the motion is undamped oscillation (time reversible)
and conserves the energy function E(x, v) = (v2 + ω2

0x
2)/2.


