
Chapter 2

Multiple variables

2.1 Two variables

2.1.1 First order coupled ODEs

While the position of a particle along a line can be represented by a single coordinate, its
location on a two-dimensional plane requires two coordinates, say indicated by x1 and x2.
In the absence of time-reversal symmetry, the generalization of Eq. (1.1.10) to two degrees
of freedom is (setting µ = 1 without loss of generality)

ẋ1 = F1(x1, x2), and ẋ2 = F2(x1, x2) . (2.1.1)

Let us assume that x1 = x2 = 0 is a point of equilibrium (at which F1 = F2 = 0). Series
expansions1 of the force around this point then yield to the lowest order

F1(x1, x2) = f11x1 + f12x2 + · · · , and F2(x1, x2) = f21x1 + f22x2 + · · · . (2.1.4)

Understanding the behavior of the system near x1 = x2 = 0 thus requires solving the pair of
coupled first order ODEs
{

ẋ1 = f11x1 + f12x2

ẋ2 = f21x1 + f22x2
, =⇒

(

ẋ1

ẋ2

)

=

(

f11 f12
f21 f22

)(

x1

x2

)

, =⇒
d!x

dt
= F · !x . (2.1.5)

1The Taylor expansion of a function of two variables takes the form

φ(x, y) = φ00 + φ10x+ φ01y +
φ20

2
x2 + φ11xy +

φ02

2
y2 + · · · ≡

∑

m,n

φmn
xm

m!

yn

n!
, (2.1.2)

with the coefficients obtained from mixed derivatives, as

φmn =
∂m

∂xm

∂n

∂yn
φ(x, y)

∣

∣

∣

∣

x=y=0

. (2.1.3)

Note that the symbol ∂/∂x is used in place of d/dx, indicating partial derivatives of the function with respect
to the variable x, when other variables of the function are held constant.

33



Note that the linear set of equations can be cast in the form of a 2× 2 matrix acting on the
column vector composed from x1 and x2.

To gain insight, let us first consider a particle sliding down a two-dimensional potential
shaped like an ellipsoidal bowl. If we align the coordinates x1 and x2 to the axes of the
ellipse, the expansion of the potential around its minimum at x1 = x2 = 0 reads

V (x1, x2) = k1
x2
1

2
+ k2

x2
2

2
+ · · · , (2.1.6)

where kx and ky are the inverse radii of curvature of the bowl. A particle that starts along
one of the axes of ellipse, say from (x1 = x0

1, x2 = 0), will stay on the axis as the symmetry
x2 → −x2 does not select one direction over the other (F2 = −k2x2 = 0 for x2 = 0), and
proceeds according to

ẋ1 = F1 = −
∂V

∂x1
= −k1x1 , =⇒ x1(t) = x0

1e
−k1t . (2.1.7)

A corresponding solution can be obtained for a particle that starts at (x1 = 0, x2 = x0
2) at

t = 0. The general solution, starting from any initial point is the simple superposition of the
two, decaying to zero as

(

x1(t)
x2(t)

)

=

(

x0
1e

−k1t

x0
2e

−k2t

)

. (2.1.8)

Let us suppose, however, that by some curious oversight we had chosen to align our
coordinate system at 45◦ (or some other angle) with respect to the natural directions of the
elliptical bowl. The new coordinates {x′

1, x
′
2}, and the old ones are related by2















x′
1 =

x1 + x2√
2

x′
2 =

−x1 + x2√
2

, and















x1 =
x′
1 − x′

2√
2

x2 =
x′
1 + x′

2√
2

. (2.1.10)

In terms of the new coordinates, the potential energy is

V =
k1
4
(x′

1 − x′
2)

2 +
k2
4
(x′

1 + x′
2)

2 =
k1 + k2

4

(

x′2
1 + x′2

2

)

−
(

k1 − k2
2

)

x′
1x

′
2 . (2.1.11)

The corresponding equations of motion for gradient descent,














ẋ′
1 = −

∂V

∂x′
1

= −
k1 + k2

2
x′
1 +

k1 − k2
2

x′
2

ẋ′
2 = −

∂V

∂x′
2

= −
k1 + k2

2
x′
2 +

k1 − k2
2

x′
1

, (2.1.12)

2For a rotation by an angle θ, we have
{

x′ = x cos θ + y sin θ

y′ = −x sin θ + y cos θ
, and

{

x = x′ cos θ − y′ sin θ

y = x′ sin θ + y′ cos θ
. (2.1.9)

34



are coupled to each other, and a may appear harder to solve. Naturally, from the original
solution to the problem, it is easy to construct solutions to these equations as















x′
1(t) =

x1(t) + x2(t)√
2

=
1√
2

[

x0
1e

−k1t + x0
2e

−k2t
]

x′
2(t) =

x2(t)− x1(t)√
2

=
1√
2

[

x0
2e

−k2t − x0
1e

−k1t
]

. (2.1.13)

However, the solutions in the case are not single exponentials, but superposition of two
exponentials.

This example demonstrates that there could be a ‘right way’ of looking at a system, and
many possible ‘wrong ways’ (rotated coordinates) of viewing it. The analysis and description
of the system becomes much simpler if the right set of coordinates are used. Surprisingly,
this is always possible for gradient descent in a linear system, and there is a way to find the
right set of variables to describe the problem.

2.1.2 Gradient descent in two dimensions

The most general form of a quadratic potential in two dimensions, generalizing Eq. (2.1.6),
is3

V (x1, x2) = V0 + k1
x2
1

2
+ k2

x2
2

2
+ k×x1x2 . (2.1.14)

Gradient descent in such a potential leads to














ẋ1 = −
∂V

∂x1
= −k1x1 − k×x2

ẋ2 = −
∂V

∂x2
= −k2x2 − k×x1

, =⇒
(

ẋ1

ẋ2

)

= −
(

k1 k×
k× k2

)(

x1

x2

)

. (2.1.15)

The analog of the direction in Eq. (2.1.7) along which the solution proceeds exponentially,
is an eigenvector of the above matrix,

M = −
(

k1 k×
k× k2

)

, (2.1.16)

with the decay rate provided by the corresponding eigenvalue. In other words, we seek
column vectors

!e± ≡
(

e1
e2

)

such that M!e± = λ±!e± . (2.1.17)

The indices ± are in anticipation of there being two directions and corresponding eigenvalues.
To obtain the eigenvalues, the equation is first rearranged as (M− λ1) · !e = 0, where 1

is the unit matrix with ones along the diagonal and zeros elsewhere. For this homogenous

3Linear terms in x1 and x2 are absent, either because of an inversion symmetry $x → −$x, or because we
are interested in deviations from a stable equilibrium.
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set of equations to have a non-zero answer, the determinant of the matrix of coefficients has
to be zero, i.e.

det(M− λ1) = 0. . (2.1.18)

For our 2× 2 matrix, this leads to a so-called characteristic equation that has the form

λ2 − trM λ+ detM = 0 , with trM = k1 + k2 and detM = k1k2 − k2
× . (2.1.19)

It is good to recall that the sum of the two eigenvalues is equal to the trace of the matrix,
while their product is the determinant of the matrix. Solving this quadratic equation gives

λ± = −
1

2

[

(k1 + k2)±
√

(k1 − k2)
2 + 4k2

×

]

. (2.1.20)

Note that the quantity under the square root is strictly positive, indicating that both eigen-
values are real. For stable equilibrium, both eigenvalues should be negative, as positive
eigenvalues will take the dynamics to infinity; this occurs for k2

× > k1k2 where detM < 0.

2.1.3 Beyond gradient descent

The reality of the eigenvalues in Eq. (2.1.20) is a consequence of the symmetry of the matrix,
which is an inevitable consequence of gradient descent in a quadratic potential. However,
even for more complicated potentials gradient descent (that F1 =

∂V
∂x1

and F2 =
∂V
∂x2

) imposes
the constraint

∂F1

∂x2
= −

∂2V

∂x2∂x1
= −

∂2V

∂x1∂x2
=
∂F2

∂x1
, (2.1.21)

since mixed partial derivatives can be taken in any order. If so, we may ask what is the
outcome of the more general dynamics that does not satisfy the above constraint, e.g. for
linearized equations such as in Eq. (2.1.5), where the matrix

F =

(

f11 f12
f21 f22

)

, (2.1.22)

is not symmetric, f12 '= f21?
As example, let us consider the following set of equations

{

ẋ = v

v̇ = −γv − ω2
0x

, =⇒
(

ẋ
v̇

)

=

(

0 1
−ω2

0 −γ

)(

x
v

)

. (2.1.23)

Clearly this systems of two coupled first order equations is simply the damped harmonic
oscillator of Eq. (1.4.8) in disguise. The eigenvalues of the asymmetric matrix are given
by Eq. (1.4.10). Notably, for γ < 2ω0 the eigenvalues have an imaginary part indicating
oscillatory behavior. In the limit γ = 0, the motion is undamped oscillation (time reversible)
and conserves the energy function E(x, v) = (v2 + ω2

0x
2)/2.
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2.1.4 Hamiltonian evolution

Conservation of energy is an important principle in physics, and it is useful to find a procedure
to construct first order equations that conserve some function, say H (x(t), p(t)). Setting
dH/dt = 0, and using the chain rule, we need

dH

dt
=
∂H

∂x
ẋ+

∂H

∂p
ṗ = 0 . (2.1.24)

One way to ensure this condition is to set

ẋ =
∂H

∂p
, and ṗ = −

∂H

∂x
. (2.1.25)

Clearly, Eqs. (2.1.23) for γ = 0 follow this structure with v playing the role of p. Indeed, the
Hamiltonian formulation of classical equations of motion follow the structure of Eq. (2.1.24)
and (2.1.25), with H(x, p) as the total energy in terms of the coordinate x and its conjugate
momentum p.

Indeed the most general pair of linear ODEs from Eq. (2.1.26) can be recast as

ẋ1 = F1(x1, x2) = −
∂V

∂x1
+
∂H

∂x2
, and ẋ2 = F2(x1, x2) = −

∂V

∂x2
−
∂H

∂x1
, (2.1.26)

as superposition of gradient descent in the potential V (x1, x2) with sliding along contours of
constant H(x1, x2).4

Recap

• A general pair of first order ODEs can be cast as gradient descent in a potential V and
sliding along contours of constant H .

• The linearized equations can be cast as a 2 × 2 matrix, whose eigenvalues determine
the exponential rates along the two eigendirections.

• Symmetric matrices, corresponding to gradient descent in a quadratic potential, have
two real eigenvalues. The eigenvalues of an asymmetric matrix may or may not be
complex, with complex eigenvalues indicative of oscillatory behavior.

4For future reference, note that given F1 and F2, the potentials V and H are solutions to















∂2V

∂x1
2
+

∂2V

∂x2
2
=

∂F1

∂x1

+
∂F2

∂x2

⇒ ∇2V = ∇ · $F

∂2H

∂x1
2
+

∂2H

∂x2
2
=

∂F1

∂x2

−
∂F2

∂x1

⇒ ∇2H = ∇× $F

. (2.1.27)
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