2.2 Multiple variables

2.2.1 Many coupled ODEs

The results of the previous section can be generalized to multiple variables indexed by $i=$ $1,2, \cdots, n$. The set of coordinates $\left\{x_{i}\right\}$ can be regraded as a point in n dimensional space, and can also be represented as a vector \vec{x} extending from the origin to this point. The generalized equations of motion can now be represented as

$$
\begin{equation*}
\dot{x}_{i}=F_{i}\left(\left\{x_{i}\right\}\right) \text { for } i=1,2, \cdots n, \quad \text { or equivalently as } \quad \dot{\vec{x}}=\vec{F}(\vec{x}) . \tag{2.2.1}
\end{equation*}
$$

The linearized equations take the form

$$
\begin{equation*}
\dot{x}_{i}=\sum_{j=1}^{n} F_{i j} x_{j} \text { for } i=1,2, \cdots n, \quad \text { or equivalently as } \quad \dot{\vec{x}}=\mathbf{F} \vec{x}, \tag{2.2.2}
\end{equation*}
$$

in terms of the $n \times n$ matrix formed from n^{2} elements $\left\{F_{i j}\right\}$.
A particular class of linear equations is obtained from gradient descent in a quadratic potential, which can be written as

$$
\begin{equation*}
V\left(\left\{x_{i}\right\}\right)=\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} M_{i j} x_{i} x_{j} . \tag{2.2.3}
\end{equation*}
$$

It may appear that n^{2} elements are needed to specify the potential. This is in fact not the case since after summation over both i and j, only the symmetric part ($M_{i j}+M_{j i}$) contributes as the coefficient of the term $x_{i} x_{j}$, while the antisymmetric part $\left(M_{i j}-M_{j i}\right)$ vanishes. Thus a general quadratic potential can be represented by $n(n+1) / 2$ elements forming a symmetric matrix, in which case $F_{i j}=M_{i j}$ in Eq. (2.2.2).

