
2.2.3 Eigenvectors and eigenvalues

As noted before, directions along which the solution proceeds as a single exponential, as in
Eq. (2.1.7) correspond to eigenvectors of the matrix F in Eq. (2.2.2). For an n× n matrix,
there are n such eigenvectors that we shall label as !eα for α = 1, 2, · · · , n, such that
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i , for α = 1, 2, · · · , n , (2.2.8)

with eαi indicating the components of !eα, and λα as the corresponding eigenvalue. (Note that
the index α on the right hand side of the above equation appears twice, but is not summed
over, as {λα} do not represent components of a vector, but instead label the solutions of
Eq. (2.2.8)).

We noted earlier that eigenvalues of a symmetric matrix with real entries Mij = Mji are
real numbers. Let us prove this as an exercise in the summation convention. Multiply both
sides of Eq. (2.2.8) with (eiβ)∗ and sum over i to get
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Taking complex conjugates of the above equation, and taking advantage of M∗
ij = Mji allows

us to rearrange the equation as
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For β = α, the second term
∑

i |eαi |2, the squared magnitude of a (possibly complex) eigen-
vector !eα is explicitly positive. We must therefore have λα = λ∗α, requiring real eigenvalues.
In fact both the real and imaginary parts of the vector !eα are eigenvectors, and without loss
of generality we can limit discussion to real eigenvectors and drop the complex conjugate
sign.

For α #= β (and assuming non-degenerate eigenvalues λα #= λβ), we are then lead to
another important result, that !eβ ·!eα = 0. The eigenvectors of a real symmetric matrix thus
form an orthogonal set in the n-dimensional space. The magnitude of the eigenvectors is
arbitrary, but it is useful to make them all equal to unity, such that they form an orthonormal
set with !eβ · !eα = δαβ .

To solve the set of linear ODEs ẋi(t) = Mijxj(t), with the initial condition xi(t = 0) =
xi(0) = x0

i :

• Find the eigenvectors !eα and the corresponding eigenvalues λα.

• Compute the coordinates of the starting point in the basis formed by the eigenvectors,
i.e. aα(0) = xi(0)eαi .

• Each component in the eigenvector basis will evolve as a simple exponential with the
corresponding eigenvalue, i.e. aα(t) = aα(0)eλαt.



• In terms of these components the location at time t is given by
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where we have introduced the linear operator Uij(t) =
∑

α e
α
i e

λαteαj whose action (mul-
tiplication) on the initial vector leads to the position at time t.

• For displacements around a stable equilibrium point, the solution in Eq. (2.2.12) must
not diverge for any choice of initial condition. For this to hold, all eigenvalues of
the matrix must be negative.6 If the matrix is obtained from gradient descent in the
potential V = Kijxixj/2, stability requires all eigenvalues of the matrix to be positive.
(The change of sign is due to the negative sign from gradient descent, Fi = −∂iV .)
Such a matrix is called positive definite and Kijxixj > 0 for any displacement !x.

6For non-symmetric matrices with complex eigenvalues, the real parts of all eigenvalues must be negative.


