2.2.3 Eigenvectors and eigenvalues

As noted before, directions along which the solution proceeds as a single exponential, as in Eq. (2.1.7) correspond to eigenvectors of the matrix \mathbf{F} in Eq. (2.2.2). For an $n \times n$ matrix, there are n such eigenvectors that we shall label as \vec{e}^{α} for $\alpha=1,2, \cdots, n$, such that

$$
\begin{equation*}
F_{i j} e_{j}^{\alpha}=\lambda_{\alpha} e_{i}^{\alpha}, \quad \text { for } \quad \alpha=1,2, \cdots, n \tag{2.2.8}
\end{equation*}
$$

with e_{i}^{α} indicating the components of \vec{e}^{α}, and λ_{α} as the corresponding eigenvalue. (Note that the index α on the right hand side of the above equation appears twice, but is not summed over, as $\left\{\lambda_{\alpha}\right\}$ do not represent components of a vector, but instead label the solutions of Eq. (2.2.8)).

We noted earlier that eigenvalues of a symmetric matrix with real entries $M_{i j}=M_{j i}$ are real numbers. Let us prove this as an exercise in the summation convention. Multiply both sides of Eq. (2.2.8) with $\left(e_{i} \beta\right)^{*}$ and sum over i to get

$$
\begin{equation*}
\left(e_{i}^{\beta}\right)^{*} M_{i j} e_{j}^{\alpha}=\lambda_{\alpha}\left(e_{i}^{\beta}\right)^{*} e_{i}^{\alpha} . \tag{2.2.9}
\end{equation*}
$$

Taking complex conjugates of the above equation, and taking advantage of $M_{i j}^{*}=M_{j i}$ allows us to rearrange the equation as

$$
\begin{equation*}
\left(e_{j}^{\alpha}\right)^{*} M_{j i} e_{i}^{\beta}=\lambda_{\alpha}^{*} e_{i}^{\beta}\left(e_{i}^{\alpha}\right)^{*} . \tag{2.2.10}
\end{equation*}
$$

Noting $M_{j i} e_{i}^{\beta}=\lambda_{\beta} e_{j}^{\beta}$, the above equation can be recast as

$$
\begin{equation*}
\left(\lambda_{\beta}-\lambda_{\alpha}^{*}\right) e_{i}^{\beta}\left(e_{i}^{\alpha}\right)^{*}=0 \tag{2.2.11}
\end{equation*}
$$

For $\beta=\alpha$, the second term $\sum_{i}\left|e_{i}^{\alpha}\right|^{2}$, the squared magnitude of a (possibly complex) eigenvector \vec{e}^{α} is explicitly positive. We must therefore have $\lambda_{\alpha}=\lambda_{\alpha}^{*}$, requiring real eigenvalues. In fact both the real and imaginary parts of the vector \vec{e}^{α} are eigenvectors, and without loss of generality we can limit discussion to real eigenvectors and drop the complex conjugate sign.

For $\alpha \neq \beta$ (and assuming non-degenerate eigenvalues $\lambda_{\alpha} \neq \lambda_{\beta}$), we are then lead to another important result, that $\vec{e}^{\beta} \cdot \vec{e}^{\alpha}=0$. The eigenvectors of a real symmetric matrix thus form an orthogonal set in the n-dimensional space. The magnitude of the eigenvectors is arbitrary, but it is useful to make them all equal to unity, such that they form an orthonormal set with $\vec{e}^{\beta} \cdot \vec{e}^{\alpha}=\delta_{\alpha \beta}$.

To solve the set of linear ODEs $\dot{x}_{i}(t)=M_{i j} x_{j}(t)$, with the initial condition $x_{i}(t=0)=$ $x_{i}(0)=x_{i}^{0}$.

- Find the eigenvectors \vec{e}^{α} and the corresponding eigenvalues λ_{α}.
- Compute the coordinates of the starting point in the basis formed by the eigenvectors, i.e. $a_{\alpha}(0)=x_{i}(0) e_{i}^{\alpha}$.
- Each component in the eigenvector basis will evolve as a simple exponential with the corresponding eigenvalue, i.e. $a_{\alpha}(t)=a_{\alpha}(0) e^{\lambda_{\alpha} t}$.
- In terms of these components the location at time t is given by

$$
\begin{equation*}
x_{i}(t)=\sum_{\alpha} a_{\alpha}(t) e_{i}^{\alpha}=\sum_{\alpha} a_{\alpha}(0) e^{\lambda_{\alpha} t} e_{i}^{\alpha}=x_{j}(0) \sum_{\alpha} e_{j}^{\alpha} e^{\lambda_{\alpha} t} e_{i}^{\alpha} \equiv U_{i j}(t) x_{j}(0), \tag{2.2.12}
\end{equation*}
$$

where we have introduced the linear operator $U_{i j}(t)=\sum_{\alpha} e_{i}^{\alpha} e^{\lambda_{\alpha} t} e_{j}^{\alpha}$ whose action (multiplication) on the initial vector leads to the position at time t.

- For displacements around a stable equilibrium point, the solution in Eq. (2.2.12) must not diverge for any choice of initial condition. For this to hold, all eigenvalues of the matrix must be negative. ${ }^{6}$ If the matrix is obtained from gradient descent in the potential $V=K_{i j} x_{i} x_{j} / 2$, stability requires all eigenvalues of the matrix to be positive. (The change of sign is due to the negative sign from gradient descent, $F_{i}=-\partial_{i} V$.) Such a matrix is called positive definite and $K_{i j} x_{i} x_{j}>0$ for any displacement \vec{x}.

[^0]
[^0]: ${ }^{6}$ For non-symmetric matrices with complex eigenvalues, the real parts of all eigenvalues must be negative.

