2.2.3 Eigenvectors and eigenvalues

As noted before, directions along which the solution proceeds as a single exponential, as in
Eq. (2.1.7) correspond to eigenvectors of the matrix F in Eq. (2.2.2). For an n X n matrix,
there are n such eigenvectors that we shall label as e* for « = 1,2,--- ,n, such that

Fijef = Aaef, for a=1,2,--- n, (2.2.8)

with e$ indicating the components of €%, and A, as the corresponding eigenvalue. (Note that
the index « on the right hand side of the above equation appears twice, but is not summed
over, as {\,} do not represent components of a vector, but instead label the solutions of
Eq. (2.2.8)).

We noted earlier that eigenvalues of a symmetric matrix with real entries M;; = Mj; are
real numbers. Let us prove this as an exercise in the summation convention. Multiply both
sides of Eq. (2.2.8) with (e;3)* and sum over i to get

(ef)*Mije?‘ = Ao (el)ex. (2.2.9)
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Taking complex conjugates of the above equation, and taking advantage of M5 = M;; allows
us to rearrange the equation as

(€9)" Myze] = Nnel (e8)" (2.2.10)
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Noting Mjief = )\gef , the above equation can be recast as
(Mg — X)) el (e2) =0. (2.2.11)

For 8 = a, the second term Y. |e%|?, the squared magnitude of a (possibly complex) eigen-
vector €% is explicitly positive. We must therefore have A\, = \!, requiring real eigenvalues.
In fact both the real and imaginary parts of the vector € are eigenvectors, and without loss
of generality we can limit discussion to real eigenvectors and drop the complex conjugate
sign.

For a # [ (and assuming non-degenerate eigenvalues \, # Ag), we are then lead to
another important result, that &% -&® = 0. The eigenvectors of a real symmetric matrix thus
form an orthogonal set in the n-dimensional space. The magnitude of the eigenvectors is
arbitrary, but it is useful to make them all equal to unity, such that they form an orthonormal
set with €7 - €% = §,5.

To solve the set of linear ODEs @;(t) = M,;x;(t), with the initial condition z;(t = 0) =
z;(0) = z?:

e Find the eigenvectors € and the corresponding eigenvalues .

e Compute the coordinates of the starting point in the basis formed by the eigenvectors,
i.e. an(0) = x;(0)es.

e Fach component in the eigenvector basis will evolve as a simple exponential with the
corresponding eigenvalue, i.e. a,(t) = a,(0)e*!.



e In terms of these components the location at time ¢ is given by
= aa(t)ed Zaa e = 2;(0 Zea dolet = Uyy(t)a;(0),  (2.2.12)

where we have introduced the linear operator U;;(t) = eae)‘“t ¢ whose action (mul-
tiplication) on the initial vector leads to the position at tlme t.

e For displacements around a stable equilibrium point, the solution in Eq. (2.2.12) must
not diverge for any choice of initial condition. For this to hold, all eigenvalues of
the matrix must be negative.® If the matrix is obtained from gradient descent in the
potential V' = K;;x;x;/2, stability requires all eigenvalues of the matrix to be positive.
(The change of sign is due to the negative sign from gradient descent, F; = —0;V.)
Such a matrix is called positive definite and K;;x;x; > 0 for any displacement Z.

6For non-symmetric matrices with complex eigenvalues, the real parts of all eigenvalues must be negative.



