
2.2.4 Functions of a matrix

In the same way that a function of a variable f(x) can be constructed through its Taylor
series, functions f(M) of a matrixM can be defined through the corresponding Taylor series,
e.g.

exp(M) = 1+M+
M2
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. (2.2.13)

Individual components of the matrix are obtained using standard rules of multiplication of
matrices, e.g.

exp(M)ij = δij +Mij +
MikMkj

2
+ · · · . (2.2.14)

Upon acting on an eigenvector,

M2"eα = MM"eα = λαM"eα = λ2α"e
α , and similarly Mn"eα = λnα"e

α . (2.2.15)

Thus "eα are eigenvectors of any function f(M) of the matrix M with corresponding eigen-
values being f(λα). The action of the matrix function f(M) on any vector "v can then be
calculated by the same procedure as used in calculating xi(t) in the previous section:

• Compute the coordinates of the vector "v in the basis formed by the eigenvectors, as
aα = vieαi .

• Under the action of f(M), each component in the eigenvector basis is multiplied by
f(λα), i.e. f(M)aα"eα = f(λα)aα"eα.

• From the components in the eigenvector basis we can reconstruct the coordinates in
the original basis as

[f(M)v]i = aαf(λα)e
α
i = vje

α
j f(λα)e

α
i ≡ f(M)ijvj . (2.2.16)

• Thus quite generally the elements of a matrix (in any basis) can be computed in terms
of a sum over its eigenvectors and eigenvalues as

f(M)ij =
∑

α

eαi f(λα)e
α
j . (2.2.17)

• Note that the trace of f(M) is obtained as

f(M)ii =
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α
i e
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∑
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f(λα) . (2.2.18)

since eαi e
α
i = "eα · "eα = 1.



We can now see that the time evolution operation in Eq. (2.2.12) is carried out by the
matrix U(t) = exp(tM). Indeed this amount to solving the linear set of ODEs as

d"x

dt
= M"x =⇒ "x(t) = exp (tM) "x(0) , (2.2.19)

treating the vector of ODEs similar to one for a scalar x. However, treating matrices in
functions and in equations as in the case of scalars has to be done very carefully, and fails
in dealing with non-commuting matrices. The commuting property of two scalar quantities
XY = Y X does not expend to matrices, and generically X · Y #= Y · X. The Taylor
series of a function of two variables must then be ordered appropriately as, for example
2X ·Y #= X ·Y +Y ·X.

Suppose we want to solve the ODE in Eq. (2.2.19) for a scalar x(t), but with M that
changes from M1 after a time t1 to M2. After a subsequent time interval of t2, we find

x(t1 + t2) = exp(t2M2)x(t1) = exp(t2M2) exp(t1M1)x(0) = exp(t1M1 + t2M2)x(0) . (2.2.20)

For the matrix version, the last step cannot be performed for non-commuting matrices, as

"x(t1+t2) = exp(t2M2)x(t1) = exp(t2M2) exp(t1M1)x(0) #= exp(t1M1+t2M2)x(0) . (2.2.21)

For a time-varying Mn, the time evolution operator must strictly follow the ordering of
matrices acting on the initial vector, i.e.

U(t1 + t2 + · · · tN ) = exp(tNMN ) exp(tN−1MN−1) · · · exp(t2M2) exp(t1M1) . (2.2.22)

In field theory, this is referred to as path ordering or time ordering of operators.


