2.2.4 Functions of a matrix

In the same way that a function of a variable $f(x)$ can be constructed through its Taylor series, functions $f(\mathbf{M})$ of a matrix \mathbf{M} can be defined through the corresponding Taylor series, e.g.

$$
\begin{equation*}
\exp (M)=\mathbf{1}+\mathbf{M}+\frac{\mathbf{M}^{2}}{2}+\cdots=\sum_{n=0}^{\infty} \frac{\mathbf{M}^{n}}{n!} \tag{2.2.13}
\end{equation*}
$$

Individual components of the matrix are obtained using standard rules of multiplication of matrices, e.g.

$$
\begin{equation*}
\exp (\mathbf{M})_{i j}=\delta_{i j}+M_{i j}+\frac{M_{i k} M_{k j}}{2}+\cdots \tag{2.2.14}
\end{equation*}
$$

Upon acting on an eigenvector,

$$
\begin{equation*}
\mathbf{M}^{2} \vec{e}^{\alpha}=\mathbf{M} \mathbf{M} \vec{e}^{\alpha}=\lambda_{\alpha} \mathbf{M} \vec{e}^{\alpha}=\lambda_{\alpha}^{2} \vec{e}^{\alpha}, \text { and similarly } \mathbf{M}^{n} \vec{e}^{\alpha}=\lambda_{\alpha}^{n} \vec{e}^{\alpha} \tag{2.2.15}
\end{equation*}
$$

Thus \vec{e}^{α} are eigenvectors of any function $f(\mathbf{M})$ of the matrix \mathbf{M} with corresponding eigenvalues being $f\left(\lambda_{\alpha}\right)$. The action of the matrix function $f(\mathbf{M})$ on any vector \vec{v} can then be calculated by the same procedure as used in calculating $x_{i}(t)$ in the previous section:

- Compute the coordinates of the vector \vec{v} in the basis formed by the eigenvectors, as $a_{\alpha}=v_{i} e_{i}^{\alpha}$.
- Under the action of $f(\mathbf{M})$, each component in the eigenvector basis is multiplied by $f\left(\lambda_{\alpha}\right)$, i.e. $f(\mathbf{M}) a_{\alpha} \vec{e}^{\alpha}=f\left(\lambda_{\alpha}\right) a_{\alpha} \vec{e}^{\alpha}$.
- From the components in the eigenvector basis we can reconstruct the coordinates in the original basis as

$$
\begin{equation*}
[f(\mathbf{M}) v]_{i}=a_{\alpha} f\left(\lambda_{\alpha}\right) e_{i}^{\alpha}=v_{j} e_{j}^{\alpha} f\left(\lambda_{\alpha}\right) e_{i}^{\alpha} \equiv f(\mathbf{M})_{i j} v_{j} \tag{2.2.16}
\end{equation*}
$$

- Thus quite generally the elements of a matrix (in any basis) can be computed in terms of a sum over its eigenvectors and eigenvalues as

$$
\begin{equation*}
f(\mathbf{M})_{i j}=\sum_{\alpha} e_{i}^{\alpha} f\left(\lambda_{\alpha}\right) e_{j}^{\alpha} \tag{2.2.17}
\end{equation*}
$$

- Note that the trace of $f(\mathbf{M})$ is obtained as

$$
\begin{equation*}
f(\mathbf{M})_{i i}=\sum_{\alpha} f\left(\lambda_{\alpha}\right) e_{i}^{\alpha} e_{i}^{\alpha}=\sum_{\alpha} f\left(\lambda_{\alpha}\right) . \tag{2.2.18}
\end{equation*}
$$

since $e_{i}^{\alpha} e_{i}^{\alpha}=\vec{e}^{\alpha} \cdot \vec{e}^{\alpha}=1$.

We can now see that the time evolution operation in Eq. (2.2.12) is carried out by the matrix $\mathbf{U}(t)=\exp (t \mathbf{M})$. Indeed this amount to solving the linear set of ODEs as

$$
\begin{equation*}
\frac{d \vec{x}}{d t}=\mathbf{M} \vec{x} \quad \Longrightarrow \quad \vec{x}(t)=\exp (t \mathbf{M}) \vec{x}(0), \tag{2.2.19}
\end{equation*}
$$

treating the vector of ODEs similar to one for a scalar x. However, treating matrices in functions and in equations as in the case of scalars has to be done very carefully, and fails in dealing with non-commuting matrices. The commuting property of two scalar quantities $X Y=Y X$ does not expend to matrices, and generically $\mathbf{X} \cdot \mathbf{Y} \neq \mathbf{Y} \cdot \mathbf{X}$. The Taylor series of a function of two variables must then be ordered appropriately as, for example $2 \mathbf{X} \cdot \mathbf{Y} \neq \mathbf{X} \cdot \mathbf{Y}+\mathbf{Y} \cdot \mathbf{X}$.

Suppose we want to solve the ODE in Eq. (2.2.19) for a scalar $x(t)$, but with M that changes from M_{1} after a time t_{1} to M_{2}. After a subsequent time interval of t_{2}, we find

$$
\begin{equation*}
x\left(t_{1}+t_{2}\right)=\exp \left(t_{2} M_{2}\right) x\left(t_{1}\right)=\exp \left(t_{2} M_{2}\right) \exp \left(t_{1} M_{1}\right) x(0)=\exp \left(t_{1} M_{1}+t_{2} M_{2}\right) x(0) . \tag{2.2.20}
\end{equation*}
$$

For the matrix version, the last step cannot be performed for non-commuting matrices, as

$$
\begin{equation*}
\vec{x}\left(t_{1}+t_{2}\right)=\exp \left(t_{2} \mathbf{M}_{2}\right) x\left(t_{1}\right)=\exp \left(t_{2} \mathbf{M}_{2}\right) \exp \left(t_{1} \mathbf{M}_{1}\right) x(0) \neq \exp \left(t_{1} \mathbf{M}_{1}+t_{2} \mathbf{M}_{2}\right) x(0) \tag{2.2.21}
\end{equation*}
$$

For a time-varying \mathbf{M}_{n}, the time evolution operator must strictly follow the ordering of matrices acting on the initial vector, i.e.

$$
\begin{equation*}
\mathbf{U}\left(t_{1}+t_{2}+\cdots t_{N}\right)=\exp \left(t_{N} \mathbf{M}_{N}\right) \exp \left(t_{N-1} \mathbf{M}_{N-1}\right) \cdots \exp \left(t_{2} \mathbf{M}_{2}\right) \exp \left(t_{1} \mathbf{M}_{1}\right) \tag{2.2.22}
\end{equation*}
$$

In field theory, this is referred to as path ordering or time ordering of operators.

