
2.2 Multiple variables

2.2.1 Many coupled ODEs

The results of the previous section can be generalized to multiple variables indexed by i =
1, 2, · · · , n. The set of coordinates {xi} can be regraded as a point in n dimensional space,
and can also be represented as a vector !x extending from the origin to this point. The
generalized equations of motion can now be represented as

ẋi = Fi({xi}) for i = 1, 2, · · ·n , or equivalently as !̇x = !F (!x) . (2.2.1)

The linearized equations take the form

ẋi =
n
∑

j=1

Fijxj for i = 1, 2, · · ·n , or equivalently as !̇x = F!x , (2.2.2)

in terms of the n× n matrix formed from n2 elements {Fij}.
A particular class of linear equations is obtained from gradient descent in a quadratic

potential, which can be written as

V ({xi}) =
1

2

n
∑

i=1

n
∑

j=1

Mijxixj . (2.2.3)

It may appear that n2 elements are needed to specify the potential. This is in fact not
the case since after summation over both i and j, only the symmetric part (Mij + Mji)
contributes as the coefficient of the term xixj , while the antisymmetric part (Mij − Mji)
vanishes. Thus a general quadratic potential can be represented by n(n + 1)/2 elements
forming a symmetric matrix, in which case Fij = Mij in Eq. (2.2.2).

2.2.2 Indexology

The summation convention (introduced to physics by Einstein) is a convenient way to rep-
resent sums, such as appearing in Eq. (2.2.3), in compact form. Basically, any index that
appears twice has to be summed over all its possible values.5 With this convention in mind,
Eqs. (2.2.2) and (2.2.3) can be written as

ẋi = Fijxj and V =
1

2
Mijxixj , (2.2.4)

with now implicit sums over i and j. In applying these rules, it is important to keep the
following in mind:

5The more sophisticated Einstein notation, relevant to general relativity, distinguishes between indices
appearing as superscripts (upper) or subscripts (lower) on a variable. We shall not deal with this subtlety
here.
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• It is very important to ensure that any index that represents a component along some
direction appears only 0, 1, 2 times on one side of an equation.

• Any such index that appears once on one side of an equation, must also appear once
on the other side of the equation.

• Note that there could be other labels, not indexing components of a vector, that are
not subject to the summation rule. The labels for eigenvalues that we shall use shortly
are an example of this exemption.

Having introduced the index notation, it is useful to be familiar with the following ter-
minology:

• Scalars are quantities that do not carry an index, such as the potential V . They can
be constructed by contracting (pairing) of entities with indices, such as in xiyi ≡ !x · !y
(the dot product of vectors !x and !y), or Mii ≡ trM (trace of a matrix).

• Vectors carry a single index such as xi or ẋi.

• Matrices such as Mij can for example be constructed from two vectors, as in xixj

or ẋixj , or also from product of other matrices, as in AijBjk = (AB)ik = Cik (the
component form of the matrix product A ·B = C).

• The Kronecker delta-function δij represents the components of the unit matrix, equal
to 1 if i = j (along the diagonal) and 0 otherwise (off diagonal). Summing over one
index of the delta-function has the effect of replacing it with the other index, as in
δijxj = xi or δijMjk = Mik. Also, note that δii = n, where n is the dimensionality of
the system.

• We can also construct objects with more indices, such as xixjxk or MijMkl, sometimes
referred to as tensors of higher rank (3 and 4 in the two examples).

• We already encountered the gradient operator in the contexts of descent in a scalar
potential V ({xi}). The operation of taking gradient can be represented by the com-
ponents of the derivative vector ∇i ≡ ∂

∂xi
≡ ∂i.

• Vector fields, such as the previously encountered force Fi({xi}) are vectors whose mag-
nitude and direction vary in coordinate space. The divergence of a vector field is the
scalar quantity

div !F = ∇ · !F = ∂iFi . (2.2.5)

Note that for Fi = −∂iV , we find

div !F = ∂iFi = −∂i∂iV ≡ −∇2V , (2.2.6)

involving the Laplacian operator ∇2 =
∑

i
∂2

∂x2
i
= ∂i∂i.
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• The chain rule can also be compactly expressed in this notation as

dV ({xi})
dt

= ∂iV
dxi

dt
= ẋi∂iV , and

dFj({xi})
dt

= ∂iFj
dxi

dt
= ẋi∂iFj , (2.2.7)

acting on a scalar and vector respectively.

2.2.3 Eigenvectors and eigenvalues

As noted before, directions along which the solution proceeds as a single exponential, as in
Eq. (2.1.7) correspond to eigenvectors of the matrix F in Eq. (2.2.2). For an n× n matrix,
there are n such eigenvectors that we shall label as !eα for α = 1, 2, · · · , n, such that

Fije
α
j = λαe

α
i , for α = 1, 2, · · · , n , (2.2.8)

with eαi indicating the components of !eα, and λα as the corresponding eigenvalue. (Note that
the index α on the right hand side of the above equation appears twice, but is not summed
over, as {λα} do not represent components of a vector, but instead label the solutions of
Eq. (2.2.8)).

We noted earlier that eigenvalues of a symmetric matrix with real entries Mij = Mji are
real numbers. Let us prove this as an exercise in the summation convention. Multiply both
sides of Eq. (2.2.8) with (eiβ)∗ and sum over i to get

(eβi )
∗Mije

α
j = λα(e

β
i )

∗eαi . (2.2.9)

Taking complex conjugates of the above equation, and taking advantage of M∗
ij = Mji allows

us to rearrange the equation as

(eαj )
∗Mjie

β
i = λ∗αe

β
i (e

α
i )

∗ . (2.2.10)

Noting Mjie
β
i = λβe

β
j , the above equation can be recast as

(λβ − λ∗α) e
β
i (e

α
i )

∗ = 0 . (2.2.11)

For β = α, the second term
∑

i |eαi |2, the squared magnitude of a (possibly complex) eigen-
vector !eα is explicitly positive. We must therefore have λα = λ∗α, requiring real eigenvalues.
In fact both the real and imaginary parts of the vector !eα are eigenvectors, and without loss
of generality we can limit discussion to real eigenvectors and drop the complex conjugate
sign.

For α %= β (and assuming non-degenerate eigenvalues λα %= λβ), we are then lead to
another important result, that !eβ ·!eα = 0. The eigenvectors of a real symmetric matrix thus
form an orthogonal set in the n-dimensional space. The magnitude of the eigenvectors is
arbitrary, but it is useful to make them all equal to unity, such that they form an orthonormal
set with !eβ · !eα = δαβ .

To solve the set of linear ODEs ẋi(t) = Mijxj(t), with the initial condition xi(t = 0) =
xi(0) = x0

i :
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• Find the eigenvectors !eα and the corresponding eigenvalues λα.

• Compute the coordinates of the starting point in the basis formed by the eigenvectors,
i.e. aα(0) = xi(0)eαi .

• Each component in the eigenvector basis will evolve as a simple exponential with the
corresponding eigenvalue, i.e. aα(t) = aα(0)eλαt.

• In terms of these components the location at time t is given by

xi(t) =
∑

α

aα(t)e
α
i =

∑

α

aα(0)e
λαteαi = xj(0)

∑

α

eαj e
λαteαi ≡ Uij(t)xj(0) , (2.2.12)

where we have introduced the linear operator Uij(t) =
∑

α e
α
i e

λαteαj whose action (mul-
tiplication) on the initial vector leads to the position at time t.

• For displacements around a stable equilibrium point, the solution in Eq. (2.2.12) must
not diverge for any choice of initial condition. For this to hold, all eigenvalues of
the matrix must be negative.6 If the matrix is obtained from gradient descent in the
potential V = Kijxixj/2, stability requires all eigenvalues of the matrix to be positive.
(The change of sign is due to the negative sign from gradient descent, Fi = −∂iV .)
Such a matrix is called positive definite and Kijxixj > 0 for any displacement !x.

2.2.4 Functions of a matrix

In the same way that a function of a variable f(x) can be constructed through its Taylor
series, functions f(M) of a matrixM can be defined through the corresponding Taylor series,
e.g.

exp(M) = 1+M+
M2

2
+ · · · =

∞
∑

n=0

Mn

n!
. (2.2.13)

Individual components of the matrix are obtained using standard rules of multiplication of
matrices, e.g.

exp(M)ij = δij +Mij +
MikMkj

2
+ · · · . (2.2.14)

Upon acting on an eigenvector,

M2!eα = MM!eα = λαM!eα = λ2α!e
α , and similarly Mn!eα = λnα!e

α . (2.2.15)

Thus !eα are eigenvectors of any function f(M) of the matrix M with corresponding eigen-
values being f(λα). The action of the matrix function f(M) on any vector !v can then be
calculated by the same procedure as used in calculating xi(t) in the previous section:

• Compute the coordinates of the vector !v in the basis formed by the eigenvectors, as
aα = vieαi .

6For non-symmetric matrices with complex eigenvalues, the real parts of all eigenvalues must be negative.
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• Under the action of f(M), each component in the eigenvector basis is multiplied by
f(λα), i.e. f(M)aα!eα = f(λα)aα!eα.

• From the components in the eigenvector basis we can reconstruct the coordinates in
the original basis as

[f(M)v]i = aαf(λα)e
α
i = vje

α
j f(λα)e

α
i ≡ f(M)ijvj . (2.2.16)

• Thus quite generally the elements of a matrix (in any basis) can be computed in terms
of a sum over its eigenvectors and eigenvalues as

f(M)ij =
∑

α

eαi f(λα)e
α
j . (2.2.17)

• Note that the trace of f(M) is obtained as

f(M)ii =
∑

α

f(λα)e
α
i e

α
i =

∑

α

f(λα) . (2.2.18)

since eαi e
α
i = !eα · !eα = 1.

We can now see that the time evolution operation in Eq. (2.2.12) is carried out by the
matrix U(t) = exp(tM). Indeed this amount to solving the linear set of ODEs as

d!x

dt
= M!x =⇒ !x(t) = exp (tM) !x(0) , (2.2.19)

treating the vector of ODEs similar to one for a scalar x. However, treating matrices in
functions and in equations as in the case of scalars has to be done very carefully, and fails
in dealing with non-commuting matrices. The commuting property of two scalar quantities
XY = Y X does not expend to matrices, and generically X · Y %= Y · X. The Taylor
series of a function of two variables must then be ordered appropriately as, for example
2X ·Y %= X ·Y +Y ·X.

Suppose we want to solve the ODE in Eq. (2.2.19) for a scalar x(t), but with M that
changes from M1 after a time t1 to M2. After a subsequent time interval of t2, we find

x(t1 + t2) = exp(t2M2)x(t1) = exp(t2M2) exp(t1M1)x(0) = exp(t1M1 + t2M2)x(0) . (2.2.20)

For the matrix version, the last step cannot be performed for non-commuting matrices, as

!x(t1+t2) = exp(t2M2)x(t1) = exp(t2M2) exp(t1M1)x(0) %= exp(t1M1+t2M2)x(0) . (2.2.21)

For a time-varying Mn, the time evolution operator must strictly follow the ordering of
matrices acting on the initial vector, i.e.

U(t1 + t2 + · · · tN ) = exp(tNMN ) exp(tN−1MN−1) · · · exp(t2M2) exp(t1M1) . (2.2.22)

In field theory, this is referred to as path ordering or time ordering of operators.
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Recap

• A coupled linear set of ODEs can be represented by a matrix M.

• Eigenvectors of M determine directions along which time evolution is in the form of a
single exponential with the eigenvalue as the rate.

• For symmetric matrices the eigenvalues are real and the eigenvectors can be arranged
as an orthonormal set, such that with !eβ · !eα = δαβ .

• Functions of a matrix can be represented using a decomposition in terms of eigenvectors
and eigenvalues.
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