2.3 Higher order coupled linear ODEs

2.3.1 General Form

The generalization of the m th order, linear, homogeneous ODE in Eq. (1.4.1) from a scalar $x(t)$ to an n-component vector \vec{x} takes the form

$$
\begin{equation*}
\mathbf{a}_{m} \frac{d^{m} \vec{x}}{d t^{m}}+\mathbf{a}_{m-1} \frac{d^{m-1} \vec{x}}{d t^{m-1}}+\cdots+\mathbf{a}_{1} \frac{d \vec{x}}{d t}+\mathbf{a}_{0} \vec{x}=0 \tag{2.3.1}
\end{equation*}
$$

where $\left\{\mathbf{a}_{m}, \cdots, \mathbf{a}_{0}\right\}$ are now $n \times n$ matrices. Note that the first order ODE set of last section, e.g. in Eq. (2.2.2), correspond to the choice of $\mathbf{a}_{0}=\mathbf{M}, \mathbf{a}_{1}=\mathbf{1}$, and $\mathbf{a}_{i}=\mathbf{0}$ for $i=2, \cdots, n$.

Once more, linearity of the set of equations allows for solutions of the form $\vec{x}(t)=\vec{e} e^{\lambda t}$. As before, each subsequent derivative multiplies $\vec{x}(t)$ by a factor λ, such that

$$
\begin{equation*}
\frac{d^{m} \vec{x}}{d t^{m}}=\lambda^{m} \vec{x}(t) \tag{2.3.2}
\end{equation*}
$$

Substituting this result into Eq.(2.3.1) gives

$$
\begin{equation*}
\left[\mathbf{a}_{m} \lambda^{m}+\mathbf{a}_{m-1} \lambda^{m-1}+\cdots+\mathbf{a}_{1} \lambda+\mathbf{a}_{0}\right] \vec{x}(t) \equiv \mathbf{D}(\lambda) \vec{x}(t)=0, \tag{2.3.3}
\end{equation*}
$$

where $\mathbf{D}(\lambda)$ is an $n \times n$ matrix.
Equation (2.3.3) should be treated as follows:

- For each value of λ, the matrix $\mathbf{D}(\lambda)$ allows for n eigenvectors, such that

$$
\begin{equation*}
\mathbf{D}(\lambda) \vec{E}^{\alpha}\left(\Lambda_{\alpha}\right)=\Lambda_{\alpha}(\lambda) \vec{E}^{\alpha}\left(\Lambda_{\alpha}\right) \quad \text { for } \quad \alpha=1,2, \cdots, n \tag{2.3.4}
\end{equation*}
$$

(The direction of the eigenvector depends implicitly on λ through the explicit dependence of its eigenvalue.)

- The eigenvectors and eigenvalues of \mathbf{D} vary with λ. For each α find solutions for λ to $\Lambda_{\alpha}(\lambda)=0$. Since \mathbf{D} is an m th order function of λ, there will be m such solutions for each α, i.e. a total of $m n$ exponential rates, $\lambda_{\alpha, \ell}$ for $\alpha=1, \cdots, n$ and $\ell=1, \cdots, m$. These $m n$ solutions are obtained by setting the determinant of $\mathbf{D}(\lambda)$ to zero.
- The appropriate eigenvectors for Eq. (2.3.3) are $\vec{e}^{\alpha}=\vec{E}^{\alpha}(0)$ evaluated at the m values of λ_{α} that satisfy $\Lambda_{\alpha}\left(\lambda_{\alpha, \ell}\right)=0$.
- The general solution to Eq. (2.3.1) is then obtained as

$$
\begin{equation*}
\vec{x}(t)=\sum_{\alpha=1}^{n}\left[\sum_{\ell=1}^{m} c_{\alpha, \ell} \ell^{\lambda_{\alpha, \ell} t}\right] \vec{e}^{\alpha} . \tag{2.3.5}
\end{equation*}
$$

