2.3 Higher order coupled linear ODEs

2.3.1 General Form

The generalization of the *m*th order, linear, homogeneous ODE in Eq. (1.4.1) from a scalar x(t) to an *n*-component vector \vec{x} takes the form

$$\mathbf{a}_{m}\frac{d^{m}\vec{x}}{dt^{m}} + \mathbf{a}_{m-1}\frac{d^{m-1}\vec{x}}{dt^{m-1}} + \dots + \mathbf{a}_{1}\frac{d\vec{x}}{dt} + \mathbf{a}_{0}\vec{x} = 0, \qquad (2.3.1)$$

where $\{\mathbf{a}_m, \cdots, \mathbf{a}_0\}$ are now $n \times n$ matrices. Note that the first order ODE set of last section, e.g. in Eq. (2.2.2), correspond to the choice of $\mathbf{a}_0 = \mathbf{M}$, $\mathbf{a}_1 = \mathbf{1}$, and $\mathbf{a}_i = \mathbf{0}$ for $i = 2, \cdots, n$.

Once more, linearity of the set of equations allows for solutions of the form $\vec{x}(t) = \vec{e}e^{\lambda t}$. As before, each subsequent derivative multiplies $\vec{x}(t)$ by a factor λ , such that

$$\frac{d^m \vec{x}}{dt^m} = \lambda^m \vec{x}(t) \,. \tag{2.3.2}$$

Substituting this result into Eq.(2.3.1) gives

$$\left[\mathbf{a}_{m}\lambda^{m} + \mathbf{a}_{m-1}\lambda^{m-1} + \dots + \mathbf{a}_{1}\lambda + \mathbf{a}_{0}\right]\vec{x}(t) \equiv \mathbf{D}(\lambda)\vec{x}(t) = 0, \qquad (2.3.3)$$

where $\mathbf{D}(\lambda)$ is an $n \times n$ matrix.

Equation (2.3.3) should be treated as follows:

• For each value of λ , the matrix $\mathbf{D}(\lambda)$ allows for *n* eigenvectors, such that

$$\mathbf{D}(\lambda)\vec{E}^{\alpha}(\Lambda_{\alpha}) = \Lambda_{\alpha}(\lambda)\vec{E}^{\alpha}(\Lambda_{\alpha}) \quad \text{for} \quad \alpha = 1, 2, \cdots, n.$$
 (2.3.4)

(The direction of the eigenvector depends implicitly on λ through the explicit dependence of its eigenvalue.)

- The eigenvectors and eigenvalues of **D** vary with λ . For each α find solutions for λ to $\Lambda_{\alpha}(\lambda) = 0$. Since **D** is an *m*th order function of λ , there will be *m* such solutions for each α , i.e. a total of *mn* exponential rates, $\lambda_{\alpha,\ell}$ for $\alpha = 1, \dots, n$ and $\ell = 1, \dots, m$. These *mn* solutions are obtained by setting the determinant of **D**(λ) to zero.
- The appropriate eigenvectors for Eq. (2.3.3) are $\vec{e}^{\alpha} = \vec{E}^{\alpha}(0)$ evaluated at the *m* values of λ_{α} that satisfy $\Lambda_{\alpha}(\lambda_{\alpha,\ell}) = 0$.
- The general solution to Eq. (2.3.1) is then obtained as

$$\vec{x}(t) = \sum_{\alpha=1}^{n} \left[\sum_{\ell=1}^{m} c_{\alpha,\ell} e^{\lambda_{\alpha,\ell} t} \right] \vec{e}^{\alpha} .$$
(2.3.5)