2.3 Higher order coupled linear ODEs

2.3.1 General Form

The generalization of the mth order, linear, homogeneous ODE in Eq. (1.4.1) from a scalar
x(t) to an n-component vector Z takes the form
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where {a,,, -+ ,ap} are now n x n matrices. Note that the first order ODE set of last section,
e.g. in Eq. (2.2.2), correspond to the choice of ag =M, a; =1, and a; =0 for i =2,--- n.

Once more, linearity of the set of equations allows for solutions of the form 7(t) = ée.

As before, each subsequent derivative multiplies Z(t) by a factor A, such that
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Substituting this result into Eq.(2.3.1) gives
(4, A™ + @, A" agd + ag] F(t) = D(V)E(L) =0, (2.3.3)

where D(A) is an n X n matrix.
Equation (2.3.3) should be treated as follows:

e For each value of A, the matrix D()\) allows for n eigenvectors, such that
DA E*(A) = Aa(V)E®(Ay) for a=1,2,---,n. (2.3.4)

(The direction of the eigenvector depends implicitly on A through the explicit depen-
dence of its eigenvalue.)

e The eigenvectors and eigenvalues of D vary with A. For each « find solutions for A to
Ao(A) = 0. Since D is an mth order function of A, there will be m such solutions for
each «, i.e. a total of mn exponential rates, Ao fora =1,--- ,nand £ =1,--- ,m.
These mn solutions are obtained by setting the determinant of D()\) to zero.

e The appropriate eigenvectors for Eq. (2.3.3) are @ = E%(0) evaluated at the m values
of A\, that satisfy Ay(Aae) = 0.

e The general solution to Eq. (2.3.1) is then obtained as

Et)=> [Z ca,fekaﬂ] e (2.3.5)



