
2.3.3 Normal modes of masses connected by springs

Symmetry plays a crucial role in constraining the form of eigenvectors of a matrix, and when
symmetries are present they can greatly simplify the search for normal modes. We shall
demonstrate the use of symmetries by considering normal modes of N identical blocks. The
first block is connected by a spring on one side to a rigid wall, and by another spring to the
second block on the other side. Each subsequent block is also connected on each side to the
previous and next block, i.e. block m is connected to blocks (m− 1) and (m+ 1). The last
block is again connected to a rigid support. All the springs are assumed to be identical, with
spring constant K, so that the overall potential energy is
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To write down the equations in compact form, let us introduce x0 = xN+1 = 0, i.e. two
immobile particles which will represent the two walls. We can then write

mẍi = Fi = −
∂V

∂xi
= −K (2xi − xi+1 − xi−1) , for i = 2, · · · , N − 1 , (2.3.9)

with

mẍ1 = F1 = −
∂V

∂x1
= −K (2x1 − x2) , and mẍN = FN = −

∂V

∂xN
= −K (2xN − xN−1) .

(2.3.10)
We again assume normal modes of the form

xi(t) = Ai cos(ωt+ φ) , (2.3.11)

and substitute into the above equation to get

ω2 $A = ω2
0T · $A , (2.3.12)

where ω0 =
√

K/m, and T is an n × n matrix whose elements are 2 along the diagonal
(Ti,i = 2), -1 for each element that is next to a diagonal (Ti,i±1 = −1), and zero every where
else. To find the normal mode frequencies, in units of ω0, we just need to diagonalize the
matrix T. We shall do this first for 3 and 4 blocks, before going on to the general case.


