
2.3 Higher order coupled linear ODEs

2.3.1 General Form

The generalization of the mth order, linear, homogeneous ODE in Eq. (1.4.1) from a scalar
x(t) to an n-component vector !x takes the form

am
dm!x

dtm
+ am−1

dm−1!x

dtm−1
+ · · ·+ a1

d!x

dt
+ a0!x = 0 , (2.3.1)

where {am, · · · , a0} are now n×n matrices. Note that the first order ODE set of last section,
e.g. in Eq. (2.2.2), correspond to the choice of a0 = M, a1 = 1, and ai = 0 for i = 2, · · · , n.

Once more, linearity of the set of equations allows for solutions of the form !x(t) = !eeλt.
As before, each subsequent derivative multiplies !x(t) by a factor λ, such that

dm!x

dtm
= λm!x(t) . (2.3.2)

Substituting this result into Eq.(2.3.1) gives

[

amλ
m + am−1λ

m−1 + · · ·+ a1λ+ a0

]

!x(t) ≡ D(λ)!x(t) = 0 , (2.3.3)

where D(λ) is an n× n matrix.
Equation (2.3.3) should be treated as follows:

• For each value of λ, the matrix D(λ) allows for n eigenvectors, such that

D(λ) !E α(Λα) = Λα(λ) !E
α(Λα) for α = 1, 2, · · · , n . (2.3.4)

(The direction of the eigenvector depends implicitly on λ through the explicit depen-
dence of its eigenvalue.)

• The eigenvectors and eigenvalues of D vary with λ. For each α find solutions for λ to
Λα(λ) = 0. Since D is an mth order function of λ, there will be m such solutions for
each α, i.e. a total of mn exponential rates, λα,# for α = 1, · · · , n and $ = 1, · · · , m.
These mn solutions are obtained by setting the determinant of D(λ) to zero.

• The appropriate eigenvectors for Eq. (2.3.3) are !eα = !E α(0) evaluated at the m values
of λα that satisfy Λα(λα,#) = 0.

• The general solution to Eq. (2.3.1) is then obtained as

!x(t) =
n
∑

α=1

[

m
∑

#=1

cα,#e
λα,"t

]

!eα . (2.3.5)
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2.3.2 Normal modes

An important case of ODEs as in Eq. (2.3.1) is provided by generalization of the damped
harmonic evolution in Eq. (1.4.7). For a collection of particles, whose deviations around a
stable equilibrium point are indicated by xi. The restoring forces in the ith direction for
small amplitudes can be written as Fi = −Kijxj , where Kij = −∂iV is a symmetric matrix
(a0 in Eq. (2.3.1)). The restoring force is balanced by mass times acceleration (appearing as
a2 in Eq. (2.3.1)), and potentially frictional forces proportional to velocity (a1 in Eq. (2.3.1)),
both with non-zero elements only along the diagonal.

For purposes of illustration, we further simplify the problem, setting all friction coeffi-
cients to zero a1 = 0, and all masses equal to unity a2 = 1, arriving to

ẍi = −Mijxj , (2.3.6)

with Mij = Kij/m.7 For displacements around a stable equilibrium point, the matrix K is
positive definite, and all eigenvalues {λα} of M are negative, An exponential decay for the
first order (gradient descent) ODE translates to oscillations for the second order ODE of
Eq. (2.3.6), at frequencies −ω2

α = λα. In this context, the eigendirections are referred to as
normal modes of the system, with {ωα} as the corresponding frequencies.

To solve for the solution to Eq. (2.3.6), we can follow the steps that lead to Eq. (2.2.12)
for the first order ODEs. The important distinction is that for each normal mode, there
are two frequencies ±

√
−λα, and time evolution along the corresponding eigendirection is

oscillatory rather than exponential decay, i.e.

Aα(t) = Aα cos(ωαt + φα) . (2.3.7)

Thus two parameters, e.g. the amplitude Aα and phase φα are needed to describe the
contribution of the normal mode. The 2n parameters needed to characterize the full solution
can for example be the initial displacements xi(0) and initial velocities ẋi(0). Analogously
to Eq. (2.2.12) a time evolution operator can be constructed to express the final positions
and velocities in terms of the initial conditions, but this is beyond the scope of our interest.

2.3.3 Normal modes of masses connected by springs

Symmetry plays a crucial role in constraining the form of eigenvectors of a matrix, and when
symmetries are present they can greatly simplify the search for normal modes. We shall
demonstrate the use of symmetries by considering normal modes of N identical blocks. The
first block is connected by a spring on one side to a rigid wall, and by another spring to the
second block on the other side. Each subsequent block is also connected on each side to the
previous and next block, i.e. block m is connected to blocks (m− 1) and (m+ 1). The last
block is again connected to a rigid support. All the springs are assumed to be identical, with

7If the masses are not equal, we still arrive to Eq. (2.3.6), with Mij = Kij/
√
mimj, after rescaling of

xi → xi/
√
mi.
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spring constant K, so that the overall potential energy is

V (x1, · · · , xN ) = V0 +
K

2

[

x2
1 + (x2 − x1)

2 + · · ·+ (xN − xN−1)
2 + x2

N

]

. (2.3.8)

To write down the equations in compact form, let us introduce x0 = xN+1 = 0, i.e. two
immobile particles which will represent the two walls. We can then write

mẍi = Fi = −
∂V

∂xi
= −K (2xi − xi+1 − xi−1) , for i = 2, · · · , N − 1 , (2.3.9)

with

mẍ1 = F1 = −
∂V

∂x1
= −K (2x1 − x2) , and mẍN = FN = −

∂V

∂xN
= −K (2xN − xN−1) .

(2.3.10)
We again assume normal modes of the form

xi(t) = Ai cos(ωt+ φ) , (2.3.11)

and substitute into the above equation to get

ω2 !A = ω2
0T · !A , (2.3.12)

where ω0 =
√

K/m, and T is an n × n matrix whose elements are 2 along the diagonal
(Ti,i = 2), -1 for each element that is next to a diagonal (Ti,i±1 = −1), and zero every where
else. To find the normal mode frequencies, in units of ω0, we just need to diagonalize the
matrix T. We shall do this first for 3 and 4 blocks, before going on to the general case.

Normal modes for 3 blocks

The matrix T in this case is

T3 =





2 −1 0
−1 2 −1
0 −1 2



 . (2.3.13)

Since the first and last particles are related by symmetry (reversing the order of particles) we
expect normal modes in which these particles either move together, or in opposite directions.
Indeed the easiest mode to guess is when these two particles move in opposite directions,
and the central one is stationary, corresponding to

!A2 =





+1
0
−1



 . (2.3.14)

It is easy to check that this is indeed an eigenvector, as

T3 · !A2 =





2 −1 0
−1 2 −1
0 −1 2









+1
0
−1



 = 2





+1
0
−1



 , λ2 = 2 . (2.3.15)

46



The corresponding frequency is
√
2ω0.

For the other eigenvectors, let us guess a form

!A =





+1
r
+1



 , (2.3.16)

and determine the parameter r. Since

T3 · !A =





2 −1 0
−1 2 −1
0 −1 2









+1
r
+1



 =





2− r
2r − 2
2− r



 , (2.3.17)

the form of the eigenvector is preserved if

2− r

2r − 2
=

1

r
, ⇒ r2 − 2 = 0, ⇒ r = ±

√
2. (2.3.18)

We can indeed check that

T3 · !A1 =





2 −1 0
−1 2 −1
0 −1 2









+1√
2

+1



 = (2−
√
2)





+1√
2

+1



 , λ1 = 2−
√
2, (2.3.19)

and

T3 · !A3 =





2 −1 0
−1 2 −1
0 −1 2









+1
−
√
2

+1



 = (2 +
√
2)





+1
−
√
2

+1



 , λ3 = 2 +
√
2. (2.3.20)

The lowest frequency of the system, ω1 = ω0

√

2−
√
2, is obtained when all three blocks

move in the same direction, although the central one has a larger amplitude. The highest

frequency, ω1 = ω0

√

2 +
√
2, is obtained when the central block moves in the opposite

direction.

Normal modes for 4 blocks

We have to diagonalize the 4× 4 matrix

T4 =









2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2









. (2.3.21)

In this case we can put the end-particles, and the central particles into two separate groups,
each related by symmetry. Let’s first guess an eigenvector of the form

!A =









+1
r
r
+1









, (2.3.22)
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which is symmetric under the reversal of label orders. From

T4 · !A =









2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2

















+1
r
r
+1









=









2− r
r − 1
r − 1
2− r









, (2.3.23)

we note that r has to be chosen such that

2− r

r − 1
=

1

r
, ⇒ r2 − r − 1 = 0, ⇒ r =

1±
√
5

2
. (2.3.24)

We can indeed then check that

T4 · !A1 =









2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2

















+1
(1 +

√
5)/2

(1 +
√
5)/2

+1









=

(

3−
√
5

2

)









+1
(1 +

√
5)/2

(1 +
√
5)/2

+1









, (2.3.25)

and

T4 · !A3 =









2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2

















+1
(1−

√
5)/2

(1−
√
5)/2

+1









=

(

3 +
√
5

2

)









+1
(1−

√
5)/2

(1−
√
5)/2

+1









. (2.3.26)

(The eigenvectors are labelled in order of the magnitude of their eigenvalue.)
The other 2 eigenvalues are obtained by starting with

!A =









+1
r
−r
−1









, (2.3.27)

which are antisymmetric under label reversal. Indeed this form is preserved, since

T4 · !A =









2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2

















+1
r
−r
−1









=









2− r
3r − 1
−3r + 1
−2 + r









, (2.3.28)

if we choose r such that

2− r

3r − 1
=

1

r
, ⇒ r2 + r − 1 = 0, ⇒ r =

−1 ±
√
5

2
. (2.3.29)
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We can indeed then check that

T4 · !A2 =









2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2

















+1
(−1 +

√
5)/2

(1−
√
5)/2

−1









=

(

5−
√
5

2

)









+1
(−1 +

√
5)/2

(1−
√
5)/2

−1









, (2.3.30)

and

T4 · !A4 =









2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2

















+1
(−1−

√
5)/2

(1 +
√
5)/2

−1









=

(

5 +
√
5

2

)









+1
(−1−

√
5)/2

(1 +
√
5)/2

−1









. (2.3.31)

We have thus found all the normal modes in this case, and they are labelled in order
of increasing frequencies. Again, the lowest frequency corresponds to particles moving most
closely together, and the highest frequency to the motion in which the particles are most
opposite each other.

Normal modes for N blocks

It appears a daunting task to find all the normal modes for the general case of n blocks.
However, there is a simple formula that generates all normal modes and frequencies. For the
αth normal mode, we will try eigenvectors of the form

!Aα =















sin
(

πα
N+11

)

sin
(

πα
N+12

)

...
sin
(

πα
N+1(N − 1)

)

sin
(

πα
N+1N

)















, for α = 1, 2, · · · , N . (2.3.32)

When multiplied by Tn, a typical element is

2 sin

(

πα

N + 1
k

)

− sin

(

πα

N + 1
(k + 1)

)

− sin

(

πα

N + 1
(k − 1)

)

=

2 sin

(

πα

N + 1
k

)[

1− cos

(

πα

N + 1

)]

,

(2.3.33)

where the trigonometric identity in Eq. (1.3.11) was used to convert the sum of two sines to
the product of sine and cosine appearing in the second line. From this we can identify the
normal mode frequencies

ωα = ω0

√

2

[

1− cos

(

πα

N + 1

)]

= 2ω0 sin

(

πα

2(N + 1)

)

, (2.3.34)

by taking advantage of another trigonometric identity, 1− cos(2θ) = 2 sin2 θ. The reasoning
that allows us to identify the eigenvector in Eq. (2.3.32) is explained in the next section.
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Recap

• Normal modes in a potential V = Kijxixj/2, are eigenvectors of the symmetric matrix
with elements Mij = Kij/

√
mimj .

• The normal mode frequencies are related to the eigenvalues of the matrix, and obtained
from solutions to det(M− ω21) = 0.

• For a frictionless chain of n blocks connected in series by springs, the equations of
motion

ẍi = ω2
0 (xi+1 + xi−1 − 2xi) , for i = 1, 2, · · · , n , (2.3.35)

allow for normal modes

x(α)
i (t) = aα sin

(

παi

N + 1

)

cos (ωαt+ φα) , for α = 1, 2, · · · , n , (2.3.36)

with frequenceis

ω2
α = 2ω2

0

[

1− cos

(

πα

N + 1

)]

, ⇒ ωα = 2ω0 sin

(

πα

2(N + 1)

)

. (2.3.37)
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