
2.4 Symmetries in matrices

2.4.1 Exchange symmetry

In general, finding eigenvalues of an n × n matrix requires solving an nth order algebraic
equation. Yet we found the eigenvalues of the 3× 3 matrix T3 in Eq. (2.3.17) and the 4× 4
matrix T4 in Eq. (2.3.21) using only quadratic equations. This is because we took advantage
of symmetries of the system, e.g. by guessing that in the normal modes the two corner
particles must move together or opposite each other. We would like to present a more formal
approach to using symmetries to help diagonalize (find eigenvectors and eigenvalues) of a
matrix.

The symmetry used in finding normal modes of 3 blocks is related to the invariance of
the equations under relabelling of coordinates 1 and 3. For example
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= V (x3, x2, x1) . (2.4.1)

We can construct a matrix E13 that exchanges these labels on any vector, changing (v1, v2, v3)
to (v3, v2, v1); this matrix is

E13 =





0 0 1
0 1 0
1 0 0



 . (2.4.2)

It is now possible to check that

E13T3=





0 0 1
0 1 0
1 0 0









2 −1 0
−1 2 −1
0 −1 2



=





0 −1 2
−1 2 −1
2 −1 0



=





2 −1 0
−1 2 −1
0 −1 2









0 0 1
0 1 0
1 0 0



=T3E13,

(2.4.3)
i.e. the dynamic matrix T3 commutes with the symmetry matrix E13. It can be shown quite
generally that if a quadratic form xiKijxj is invariant under a permutation (relabelling) of
the indices, the corresponding symmetry matrix P commutes with the matrix K.

We can now take advantage of the following important result:
• If two (or more) matrices commute with each other, they can be simultaneously diagonalized,
i.e. they share the same eigenvectors (with different eigenvalues).
To prove this result, let us assume that matrices P and K commute, i.e. PK = KP, and
that vector !e is a non-degenerate8 eigenvector of P with eigenvalue λP . We then have

P · (K!e) = K · (P!e) = λP (K!e) , (2.4.4)

i.e. the vector (K!e) is also an eigenvector of P with eigenvalue λP . Since this eigenvalue is
non-degenerate, (K!e) must be proportional to !e, namely

K!e = λK!e , (2.4.5)

8An eigenvector is non-degenerate if no other eigenvectors share the same eigenvalue. The proof can be
easily generalized to allow for degenerate eigenvectors.



indicating that !e is also an eigenvector of K with some (to be determined) eigenvalue λK .
It is usually simpler to diagonalize the matrix characterizing a symmetry. For example

since two exchanges lead back to the original labeling, the exchange matrix satisfies E13·E13 =
1. Acting on an eigenvector of E13 with eigenvalue λ, this identify implies λ2 = 1, i.e.
the eigenvalues of E13 are ±1. Knowledge of the eigenvalues enables construction of the
corresponding eigenvectors. Let us denote the components of the eigenvector corresponding
to λ = −1 by (e1, e2, e3); then

T3 · !e =





0 0 1
0 1 0
1 0 0









e1
e2
e3



 =





e3
e2
e1



 = −





e1
e2
e3



 , ⇒ e3 = −e1 and e2 = 0 . (2.4.6)

We thus recover the eigenvector A2 proposed in Eq. (2.3.14). A similar construction for the
eigenvector corresponding to λ+ = 1 leads to

T3 · !e =





0 0 1
0 1 0
1 0 0









e1
e2
e3



 =





e3
e2
e1



 =





e1
e2
e3



 , ⇒ e3 = e1 and arbitrary e2 , (2.4.7)

i.e. the eigenvector proposed in Eq. (2.3.16). As an exercise you can repeat the above
analysis for the case of 4 blocks.


