
2.4.2 Periodic chain of blocks

To gain insight onto how the eigenvectors Ak of Eq. (2.3.32) were arrived at, we first start
with a different problem. Consider a chain of N blocks connected by identical springs,
including a spring connecting the endpoints to form a ring. The potential energy analogous
to Eq. (2.3.8) is now

V (x1, · · · , xN) = V0 +
K

2

[

(x2 − x1)
2 + · · ·+ (xN − xN−1)

2 + (x1 − xN )
2
]

. (2.4.8)

The ordering of coordinates along the ring is arbitrary, and we could have started counting
from any one of the blocks. The symmetry can be captured by the N ×N matrix

S1 =















0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

... · · ·
...

1 0 0 0 · · · 0















, (2.4.9)

corresponding to increasing all indices up by 1 (modulus N , i.e. xN+1 = x1). We could
have also shifted the labels by 2, corresponding to S2 = S1 · S1 = S2

1. The collection of shift
matrices {Sp = Sp

1} commute with each other and are simultaneously diagonalizable. The
possible eigenvalues are easily obtained by noting that SN = SN

1 = 1, returning the original
ordering; consequently

λN = 1 =⇒ λα = exp

(

2πiα

N

)

≡ ωα for α = 1, · · · , N . (2.4.10)

The complex solutions, referred to as the Nth roots of unity correspond to points in the
complex plane at angles separated by 2π/N . The eigenvalues appear in complex conjugate
pairs, with the exception of 1 (and -1 for even N).

With eigenvalues at hand, we can proceed to constructing the eigenvectors of S1. For the
αth eigenvector, S1 · %eα = ωα%eα implies















0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

... · · · ...
1 0 0 0 · · · 0
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, =⇒ eαk = ωαeαk−1 , (2.4.11)

for k = 2, · · · , N , while eα1 = ωαeαN . Taking advantage of ωαω(N−1)α = exp(2πiα) = 1,
we conclude that eαk = ωα(k−1)eα1 . Starting with eα1 = ωα, and equiring the normalization



(%eα)∗ · %eβ = δαβ , then leads to the orthonormal set of vectors

%eα =
1√
N















ωα

ω2α

ω3α

...
ωNα















, for α = 1, 2 · · · , N , with ω = exp

(

2πi

N

)

. (2.4.12)

Armed with the knowledge of eigenvectors, we can now evaluate the normal mode fre-
quencies of the periodic chain according to Eq. (2.3.12), using the matrix

T′
N =















2 −1 0 0 · · · −1
−1 2 −1 0 · · · 0
0 −1 2 1− · · · 0
...

...
...

... · · ·
...

−1 0 0 0 · · · 2















. (2.4.13)

A typical element arising from T′
N%e

α = λα%eα gives

−ωα(k−1) + 2ωαk − ωα(k+1) = λαω
αk , (2.4.14)

leading to

λα = −ωα − ω−α + 2 = 2− 2 cos
(πα

N

)

= 4 sin2
( πα

2N

)

, (2.4.15)

again using the identity 1− cos(2θ) = 2 sin2 θ.
Note that while the eigenvalues of the asymmetric matrix S1 are complex, the corre-

sponding eigenvalues for T′
N are real as required by its symmetry. This is accompanied by

a degeneracy, since pairs of complex eigenvectors, corresponding to %eα and (%eα)∗ (indexed
by α and N − α), result in the same eigenvalue in Eq. (2.4.15). Due to this degeneracy, for
each such pair, we can replace occurrences of ωαk and ω−αk in components of the complex
eigenvectors in Eq. (2.4.12) with sin(παk/N) or cos(παk/N) to construct real eigenvectors,
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(
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, and %sα =
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. (2.4.16)

(To properly normalize such eigenvectors
√

1/N will need to be replaced with
√

2/N .) We
have to be careful with allowed values of α to avoid over-counting: α = 0, 1, 2, · · · up to the
integer part of N/2, with the α = 0 (and α = N/2 if N is even) absent for the sine modes.


