2.4.2 Periodic chain of blocks

To gain insight onto how the eigenvectors Ay, of Eq. (2.3.32) were arrived at, we first start
with a different problem. Consider a chain of N blocks connected by identical springs,
including a spring connecting the endpoints to form a ring. The potential energy analogous
to Eq. (2.3.8) is now

Vi(wy,-on) = Vo + % [(mg —21)2 4+ (zy —an1)? + (21 —an)?] . (2.4.8)

The ordering of coordinates along the ring is arbitrary, and we could have started counting
from any one of the blocks. The symmetry can be captured by the N x N matrix

0100 0
0010 -0

S$=(0001 - 0f, (2.4.9)
1000 0

corresponding to increasing all indices up by 1 (modulus N, i.e. zxi; = x1). We could
have also shifted the labels by 2, corresponding to S; = S; - S; = S%. The collection of shift
matrices {S, = S} commute with each other and are simultaneously diagonalizable. The
possible eigenvalues are easily obtained by noting that Sy = SY = 1, returning the original
ordering; consequently
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W=1 = )\a:exp( )Ewo‘ fora=1,---,N. (2.4.10)

The complex solutions, referred to as the Nth roots of unity correspond to points in the
complex plane at angles separated by 27 /N. The eigenvalues appear in complex conjugate
pairs, with the exception of 1 (and -1 for even N).

With eigenvalues at hand, we can proceed to constructing the eigenvectors of S;. For the
ath eigenvector, S; - €% = w*e® implies

0100 0 ef €5 e
0010 of [ e es €S
0001 0 s=1ed|=w"]|, = eF=w%,, (24.11)
1000 0/ \ex e €%
for k = 2,---, N, while ¢f = w®%. Taking advantage of w®w™ D = exp(2ria) = 1,

we conclude that e = w**~De¥  Starting with e = w®, and equiring the normalization



(€%)* - & = 6,4, then leads to the orthonormal set of vectors
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€= —1|Ww ,fora=1,2--- N, withw=exp | — | . 2.4.12
vl (%) i
wNa

Armed with the knowledge of eigenvectors, we can now evaluate the normal mode fre-
quencies of the periodic chain according to Eq. (2.3.12), using the matrix

2 -1 0 0 ~1
-1 2 -1 0 -~ 0

=0 -1 2 1I- - 0|, (2.4.13)
-1 0 0 0 2

A typical element arising from T’y e* = A\, gives
—wok=l) ogek _ alhrl) — § ek (2.4.14)

leading to
TQ T
Ay = —w® —w @ 42=2-2 (—):4'2(—), 2.4.15
w* —w * 4 cos { sin” 5 ( )
again using the identity 1 — cos(26) = 2sin? 6.

Note that while the eigenvalues of the asymmetric matrix S; are complex, the corre-
sponding eigenvalues for T’ are real as required by its symmetry. This is accompanied by
a degeneracy, since pairs of complex eigenvectors, corresponding to €* and (€*)* (indexed
by @ and N — «), result in the same eigenvalue in Eq. (2.4.15). Due to this degeneracy, for
each such pair, we can replace occurrences of w® and w=°* in components of the complex
eigenvectors in Eq. (2.4.12) with sin(mak/N) or cos(mrak/N) to construct real eigenvectors,

cOS 2”7‘“1 sin %Tal
5 cos Z’TTQQ 5 s%n Z’TTQQ
o — ~ cos (%3) , and 5% = \/; sin (%3) . (2.4.16)
CoS (%TQN) =1 sin (%TO‘N) =0

(To properly normalize such eigenvectors /1/N will need to be replaced with y/2/N.) We
have to be careful with allowed values of « to avoid over-counting: o« = 0,1,2,--- up to the
integer part of N/2, with the o = 0 (and v = N/2 if N is even) absent for the sine modes.



