
2.4 Symmetries in matrices

2.4.1 Exchange symmetry

In general, finding eigenvalues of an n × n matrix requires solving an nth order algebraic
equation. Yet we found the eigenvalues of the 3× 3 matrix T3 in Eq. (2.3.17) and the 4× 4
matrix T4 in Eq. (2.3.21) using only quadratic equations. This is because we took advantage
of symmetries of the system, e.g. by guessing that in the normal modes the two corner
particles must move together or opposite each other. We would like to present a more formal
approach to using symmetries to help diagonalize (find eigenvectors and eigenvalues) of a
matrix.

The symmetry used in finding normal modes of 3 blocks is related to the invariance of
the equations under relabelling of coordinates 1 and 3. For example

V (x1, x2, x3) = V0 +
K

2

[

x2
1 + (x2 − x1)

2 + x2
3

]

= V (x3, x2, x1) . (2.4.1)

We can construct a matrix E13 that exchanges these labels on any vector, changing (v1, v2, v3)
to (v3, v2, v1); this matrix is

E13 =





0 0 1
0 1 0
1 0 0



 . (2.4.2)

It is now possible to check that

E13T3=





0 0 1
0 1 0
1 0 0









2 −1 0
−1 2 −1
0 −1 2



=





0 −1 2
−1 2 −1
2 −1 0



=





2 −1 0
−1 2 −1
0 −1 2









0 0 1
0 1 0
1 0 0



=T3E13,

(2.4.3)
i.e. the dynamic matrix T3 commutes with the symmetry matrix E13. It can be shown quite
generally that if a quadratic form xiKijxj is invariant under a permutation (relabelling) of
the indices, the corresponding symmetry matrix P commutes with the matrix K.

We can now take advantage of the following important result:
• If two (or more) matrices commute with each other, they can be simultaneously diagonalized,
i.e. they share the same eigenvectors (with different eigenvalues).
To prove this result, let us assume that matrices P and K commute, i.e. PK = KP, and
that vector !e is a non-degenerate8 eigenvector of P with eigenvalue λP . We then have

P · (K!e) = K · (P!e) = λP (K!e) , (2.4.4)

i.e. the vector (K!e) is also an eigenvector of P with eigenvalue λP . Since this eigenvalue is
non-degenerate, (K!e) must be proportional to !e, namely

K!e = λK!e , (2.4.5)

8An eigenvector is non-degenerate if no other eigenvectors share the same eigenvalue. The proof can be
easily generalized to allow for degenerate eigenvectors.
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indicating that !e is also an eigenvector of K with some (to be determined) eigenvalue λK .
It is usually simpler to diagonalize the matrix characterizing a symmetry. For example

since two exchanges lead back to the original labeling, the exchange matrix satisfies E13·E13 =
1. Acting on an eigenvector of E13 with eigenvalue λ, this identify implies λ2 = 1, i.e.
the eigenvalues of E13 are ±1. Knowledge of the eigenvalues enables construction of the
corresponding eigenvectors. Let us denote the components of the eigenvector corresponding
to λ = −1 by (e1, e2, e3); then

T3 · !e =





0 0 1
0 1 0
1 0 0









e1
e2
e3



 =





e3
e2
e1



 = −





e1
e2
e3



 , ⇒ e3 = −e1 and e2 = 0 . (2.4.6)

We thus recover the eigenvector A2 proposed in Eq. (2.3.14). A similar construction for the
eigenvector corresponding to λ+ = 1 leads to

T3 · !e =





0 0 1
0 1 0
1 0 0









e1
e2
e3



 =





e3
e2
e1



 =





e1
e2
e3



 , ⇒ e3 = e1 and arbitrary e2 , (2.4.7)

i.e. the eigenvector proposed in Eq. (2.3.16). As an exercise you can repeat the above
analysis for the case of 4 blocks.

2.4.2 Periodic chain of blocks

To gain insight onto how the eigenvectors Ak of Eq. (2.3.32) were arrived at, we first start
with a different problem. Consider a chain of N blocks connected by identical springs,
including a spring connecting the endpoints to form a ring. The potential energy analogous
to Eq. (2.3.8) is now

V (x1, · · · , xN) = V0 +
K

2

[

(x2 − x1)
2 + · · ·+ (xN − xN−1)

2 + (x1 − xN )
2
]

. (2.4.8)

The ordering of coordinates along the ring is arbitrary, and we could have started counting
from any one of the blocks. The symmetry can be captured by the N ×N matrix

S1 =















0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

... · · ·
...

1 0 0 0 · · · 0















, (2.4.9)

corresponding to increasing all indices up by 1 (modulus N , i.e. xN+1 = x1). We could
have also shifted the labels by 2, corresponding to S2 = S1 · S1 = S2

1. The collection of shift
matrices {Sp = Sp

1} commute with each other and are simultaneously diagonalizable. The
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possible eigenvalues are easily obtained by noting that SN = SN
1 = 1, returning the original

ordering; consequently

λN = 1 =⇒ λα = exp

(

2πiα

N

)

≡ ωα for α = 1, · · · , N . (2.4.10)

The complex solutions, referred to as the Nth roots of unity correspond to points in the
complex plane at angles separated by 2π/N . The eigenvalues appear in complex conjugate
pairs, with the exception of 1 (and -1 for even N).

With eigenvalues at hand, we can proceed to constructing the eigenvectors of S1. For the
αth eigenvector, S1 · !eα = ωα!eα implies















0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

... · · · ...
1 0 0 0 · · · 0





























eα1
eα2
eα3
...
eαN















=















eα2
eα3
eα4
...
eα1















= ωα















eα1
eα2
eα3
...
eαN















, =⇒ eαk = ωαeαk−1 , (2.4.11)

for k = 2, · · · , N , while eα1 = ωαeαN . Taking advantage of ωαω(N−1)α = exp(2πiα) = 1,
we conclude that eαk = ωα(k−1)eα1 . Starting with eα1 = ωα, and equiring the normalization
(!eα)∗ · !eβ = δαβ , then leads to the orthonormal set of vectors

!eα =
1√
N















ωα

ω2α

ω3α

...
ωNα















, for α = 1, 2 · · · , N , with ω = exp

(

2πi

N

)

. (2.4.12)

Armed with the knowledge of eigenvectors, we can now evaluate the normal mode fre-
quencies of the periodic chain according to Eq. (2.3.12), using the matrix

T′
N =















2 −1 0 0 · · · −1
−1 2 −1 0 · · · 0
0 −1 2 1− · · · 0
...

...
...

... · · ·
...

−1 0 0 0 · · · 2















. (2.4.13)

A typical element arising from T′
N!e

α = λα!eα gives

−ωα(k−1) + 2ωαk − ωα(k+1) = λαω
αk , (2.4.14)

leading to

λα = −ωα − ω−α + 2 = 2− 2 cos
(πα

N

)

= 4 sin2
( πα

2N

)

, (2.4.15)
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again using the identity 1− cos(2θ) = 2 sin2 θ.
Note that while the eigenvalues of the asymmetric matrix S1 are complex, the corre-

sponding eigenvalues for T′
N are real as required by its symmetry. This is accompanied by

a degeneracy, since pairs of complex eigenvectors, corresponding to !eα and (!eα)∗ (indexed
by α and N − α), result in the same eigenvalue in Eq. (2.4.15). Due to this degeneracy, for
each such pair, we can replace occurrences of ωαk and ω−αk in components of the complex
eigenvectors in Eq. (2.4.12) with sin(παk/N) or cos(παk/N) to construct real eigenvectors,

!cα =

√

2

N















cos
(

2πα
N 1
)

cos
(

2πα
N 2
)

cos
(

2πα
N 3
)

...
cos
(

2πα
N N

)

= 1















, and !sα =

√

2

N















sin
(

2πα
N 1
)

sin
(

2πα
N 2
)

sin
(

2πα
N 3
)

...
sin
(

2πα
N N

)

= 0















. (2.4.16)

(To properly normalize such eigenvectors
√

1/N will need to be replaced with
√

2/N .) We
have to be careful with allowed values of α to avoid over-counting: α = 0, 1, 2, · · · up to the
integer part of N/2, with the α = 0 (and α = N/2 if N is even) absent for the sine modes.

2.4.3 Pinned chain of blocks

While the eigenvalues of the periodic chain in Eq. (2.4.15) are non-negative, there is one
mode for α = N with λN = 0. This mode describes the free motion of the center of mass
of the chain which does not experience any restoring force. Such a mode is absent for the
chain with the 2 ends pinned to walls presented in Eq. (2.3.8). However, the eigenvectors in
Eq. (2.3.32) and the eigenvalues in Eq. (2.3.34) are almost identical to those of the periodic
chain. How is this possible?

Consider the sine eigenvector in Eq. (2.4.16) for a longer chain of M = 2(N + 1) blocks.
Ignore the first N components of this vector that may or may not be non-zero. The (N+1)th

component is sin
(

2πα(N+1)
2(N+1)

)

= 0 is zero for all integer α. There are then againN components,

coinciding exactly with those in Eq. (2.3.32), since sin
(

2πα(N+1+k)
2(N+1)

)

= sin
(

2παk
2(N+1)

)

. that

may or may not be non-zero, followed by the last element of the sine eigenvector which is
always zero. The mid-point and final zero components of this eigenvector act precisely as the
stationary walls to which the end blocks are connected. Thus normal modes of the pinned
chain are found embedded in normal modes of a longer periodic chain!
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Recap

• If two matrices commute they share the same eigenvectors, but with possibly different
eigenvalues.

• Some symmetries (e.g. under exchange, shift, or permutation) can be described by
matrices.

• It is typically easier to diagonalize matrices corresponding to symmetries; their eigen-
vectors can then be used to construct eigenvectors for problems sharing those symme-
tries.

• Translation (shift) symmetries are diagonalized by sine and cosine modes, presaging
Fourier decomposition.
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