
3.1 From particles to fields

3.1.1 Continuum limit

A particular realization of the model of N blocks connected by springs is a set of beads
glued at equidistant separations a along a stretched rubber band. In the case of the masses
connected to fixed walls, an open rubber band would be stretched to a length L = (N +
1)a between two nails; in the periodic case, a closed rubber band could tighten around a
circle of perimeter 2πR = Na. If each bead, labelled by n, is now displaced by un from
its equilibrium position, the additional elastic energy stored in the rubber band is in the
harmonic (quadratic) approximation (valid for small displacements) given by
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(Any interactions of the particles with a supporting surface/ring are ignored.) Rather than
actual beads glued to the rubber band, we could just indicate their positions by tick marks
along the band, and Eq. (3.1.1) describes the potential energy cost of expanding and con-
tracting different discrete segments of the rubber band. A finer description of the local
strains and stretches of the rubber band can be obtained by doubling the number of tick
marks to 2N at equilibrium separation of a/2. This effective spring constant for the finely
spaced marks would be different from K̃, and to emphasize this dependence on the chosen
spacing will be denoted by Ka.

The continuum limit is obtained as N → ∞ and a → 0, while maintaining a fixed
L = Na. In this limit, we shall replace the discrete displacements {un} with the continuous
function u(x) which we shall refer to as field defined the interval 0 ≤ x ≤ L. The local
elastic cost Ka(un+1 − un)2/2 is replaced with Kaa2(du/dx)2, and the sum over these local

costs with an integral,
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In making the transition from the discrete variables {un} in Eq. (3.1.1) to the continuum
limit of Eq. (3.1.3), we should note the following points:

• The potential energy is now a function of the function u(x). This functional dependance
is usually indicated by the square brackets, as V [u(x)]. However, the final result does
not depend on x, in the same sense that the discrete version is a scalar variable without
an index.



• The integration variable x, introduces a factor of length, which is removed through
division by a, hence

∑
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• There can in principle be higher order derivatives in the expansion of the local energy,
since (since with x = na)
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To see if ignoring higher order derivatives is justified, let us consider a deformation over
a characteristic distance λ. For simplicity we choose a form un ∝ exp(an/λ) where each
additional derivative is equivalent to multiplication by a factor of a/λ. This also holds
for other deformation profiles, with the neglect of higher order derivatives justified for
λ & a. The “gradient expansion” is thus valid for deformations that are much larger
than any underlying microscopic scale (e.g. atomic size).

• Following these changes, the coefficient of the squared gradient is aKa. The continuum
elastic modulus K is then obtained as K = lima→0(aKa).

• The pinned and periodic chains are now distinguished by boundary conditions: u(L) =
u(0) = 0 for the former, while u(L) = u(0) for the latter.


