
3.1.2 Functional derivatives

From the potential in Eq. (3.1.1), woth K̃ = Ka, we obtain a force acting on the nth bead
via gradient descent as

Fn = −
dV

dun
= Ka[(un+1 − un)− (un − un−1)] = Ka(un+1 + un−1 − 2un) . (3.1.5)

In the continuum limit, using Ka = K/a, the above expression goes over to a second deriva-
tive, resulting in a force density

F(x) = −
δV

δu(x)
= K

d2u

dx2
≡ Ku′′ . (3.1.6)

(To simplify equations, spacial derivatives will sometimes be denoted by primes; not to be
confused with time derivatives indicated by dots.) F(x) is a density at x, as it is a force
acting on an infinitesimal element of size dx around the point x = na. The symbol δV/δu(x)
indicates a functional derivative, charting the change in the value of the functional if its
argument– the function u(x)– is changed by an infinitesimal amount at position x. As in
the case of the elastic band, we shall mostly deal with functionals that can be expressed as
an integral of a density, such as

V [f(x)] =

∫

dx U (f, f ′, f ′′, · · · ) . (3.1.7)

The integrand, U(x) = U(f(x), f ′(x).f ′′(x), · · · ), depends on the function and its derivatives
at point x. The functional derivative is then obtained as

δV

δf(x)
=

dU

df
−

d

dx

dU

df ′ +
d2

dx2

dU

df ′′ + · · · , (3.1.8)

and does depend on x, much as in the dependence of the force Fn in Eq. (3.1.5) on n. Only
the second term is present in taking the functional derivative of Eq. (3.1.3), as in this case
U = K

2 (u
′)2, such that dU

du = 0 dU
du′ = Ku′, dU

du′′ = 0, and so on. The integration of Eq. (3.1.7)
shows that U has different units than V , so that U is a potential density, and its derivative
F in Eq. (3.1.6) is a force density.


