
3.1.3 The gradient expansion

In considering a single degree of freedom, u, we noted that simple reasonings based on
continuity, small amplitudes, and slow variations, lead to typical force of the form

F (u) = f0 + f1u+ f2
u2

2
+ · · · ≈ −Ju . (3.1.9)

For deformations around a stable equilibrium we must have f0 = 0, and f1 < 0, and can
ignore higher order terms and small amplitudes, as implemented in the second part of the
equation (J > 0).

We anticipate that the time evolution of the field at each position is governed by a force
density F that depends on its value at that position, as well as values at nearby locations as in
Eq. (3.1.5). Assuming smooth variations over scales larger than any underlying “microscopic”
scale then suggests that the force density can be expanded in terms of derivatives of the field
at that location, as in Eq. (3.1.5). Indeed, the generalized Taylor expansion for the force
density at position x takes the form

F(u(x), u′(x), u′′(x),· · · )=f0+ f1u+ g1u
′+h1u

′′+ · · ·+ f2
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u′2
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+ · · · , (3.1.10)

where primes indicate derivatives with respect to x. The various terms in this series expansion
can be ordered according to powers of u and powers of the gradient.

Once more, we can rely on various arguments to focus on important terms in the series:

• If expanding around an equilibrium conditions, u∗(x) = 0, f0 = 0, and f1 < 0.

• The term g1 is absent in Eq. (3.1.6). This is because of an implicit inversion symmetry
x → −x for the rubber band. Indeed most of the examples we shall encounter have
this symmetry.

• For deformations proportional to sin(qx), representing a sinusoidal distortion, the sec-
ond derivative term generates a restoring force proportional to −q2h1. For the field to
be stable against such sinusoidally modulated deformations we need h1 > 0.1

• For a deformation of characteristic range λ, the contribution of a term involving m
factors of u and n derivatives scales as um/λn. The leading terms for small ampli-
tude, long wavelength deformations around a steady state of a system with reflection
symmetry thus take the generic form

F(x) = −Ju+K
d2u

dx2
. (3.1.11)

1Strictly speaking, this constraint applies to the highest order derivative term included in the equation.
In general, to ensure stability we must check that the restoring force is negative for any wavelength.



• With the expansion terminated with the two terms in Eq. (3.1.11), the force density
can be obtained from gradient descent in a functional

V [u(x)] =

∫
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. (3.1.12)

While higher order terms in powers of u can also be represented by corresponding terms
in the above functional, this is no necessarily the case for higher order terms involving
derivatives. For example, you can check that the term g2u′2 in Eq. (3.1.10) cannot be
generated as a simple functional derivative.

The force density in Eq. (3.1.6) is even simpler than Eq. (3.1.11) in that the coefficient
J of the linear term in u is also absent. Indeed, J = 0 is required for the rubber band by
yet another symmetry: The energy density stored in the rubber band is not modified under
the transformation u(x) → u(x)+ c for any uniform displacement c. This is most obvious in
the ring geometry, as addition of c corresponds to rotating a distorted ring without changing
any of the local distortions. From another perspective, the equilibrium condition requires
the beads on the chain to be equidistant, but (barring pinning at the boundaries) does
not specify an actual location. Adding a constant c corresponds to a shift of the chosen
equilibrium state. The symmetry u(x) → u(x) + c thus forbids the term proportional to J
in Eq. (3.1.12).


