
3.1.4 Partial Differential Equations

For the single coordinate u, the force F (u) governs time evolution according to

γu̇+mü+ · · · = F (u) ≈ −Ju+ · · · . (3.1.13)

For small deformations around a stable equilibrium point, this equation has exponential
solutions describing decay to equilibrium, or oscillations around it. We can ask if there
are natural generalizations of Eq. (3.1.13), and corresponding forms of time evolution, for a
continuous field u(x). The natural extension of Eq. (3.1.13) takes the form

η
∂u

∂t
+ ρ

∂2u

∂t2
= F(u) ≈ −Ju+K

∂2u

∂x2
+ · · · . (3.1.14)

• We have used ∂u, rather than du to emphasize that Eq. (3.1.14) is a partial differential
equation (PDE). The function u(x, t) depends on two arguments; partial derivatives
are taken with respect to one argument with the other treated as a constant.

• For η = 0, the PDE has time reversal symmetry. As in the single particle case of
Eq. (1.1.6), the time invariant equation conserves an energy functional
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Note that the application of chain rule gives
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where the difference in sign between the first and third terms is because only the third
term involves derivatives with respect to the argument of the integration, and using
integration by parts yields

∫

(∂xu)(∂x∂tu) = −
∫

(∂x∂xu)(∂tu). For η = 0 in Eq. (3.1.14)
the square brackets is zero and hence dE/dt = 0.

• For η #= 0, substituting from Eq. (3.1.14) into Eq. (3.1.16) gives
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quantifying the loss of energy due to friction.

The term proportional to J in Eq. (3.1.14) is absent in many physical systems due to
symmetry or other constraints, leading to two of the most commonly encountered PDEs:

• The diffusion equation corresponds to the case of ρ = 0 (with symmetries appro-
priate to J = 0), and is generally written as
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where D is the diffusion coefficient.



– If we integrate both sides of the equation with respect to x over an interval from
a to b, we find
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i.e. the change in the total amount of u in the interval comes only from the flux
of u into and out of the interval at its edges.

– The diffusion equation can thus be regarded as describing the dynamics of a
conserved quantity, through a continuity equation
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• The wave equation describes the opposite limit of η = 0 in a system constrained by
time reversal symmetry, and usually written as
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where v is the wave velocity. The wave equation admits solutions of the form u(x, t) =
u±(x ± vt) (i.e. a function only of either x ± vt, rather than x and t separately) in
which a deformation is simply translated forward or backward along space with speed
v.


