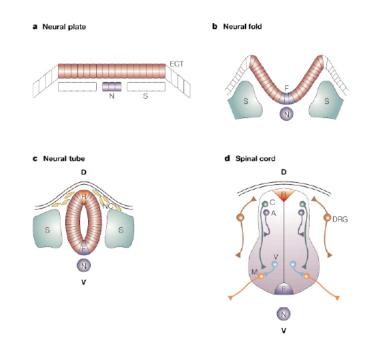
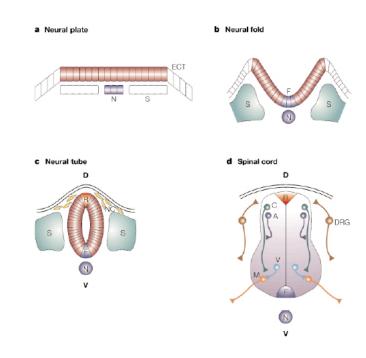
Regionalization of the nervous system


Paul Garrity 7.68J/9.013J February 25, 2004

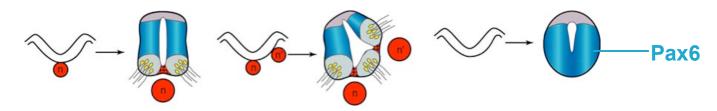
Patterning along:

- Rostral/Caudal (AP) axis
- Dorsal/Ventral (DV) axis
 - Start with DV axial patterning in Spinal Cord


Dorsal/Ventral Axis patterning

- Structures along DV axis of Neural Tube
 - Roof plate (R)
 - Floor plate (F)
 - Notochord (N)
 - Neural crest (NC)
 - Paraxial mesoderm/somites (S)

Dorsal/Ventral Axis patterning


- Structures along DV axis of embryonic spinal cord
 - Dorsal:
 - Commissural Neurons (C)
 - Association Neurons (A)
 - Ventral
 - Ventral Interneurons (V)
 - Motor Neurons (M)
 - Dorsal Root Ganglion (DRG)
 Neurons -- Neural crest derived

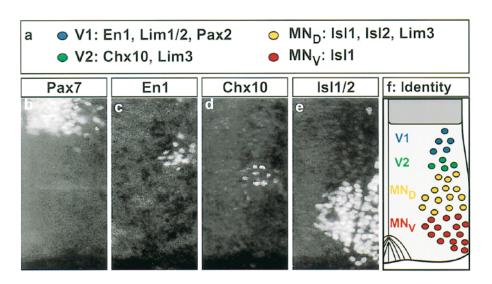
The Notochord in patterning DV axis

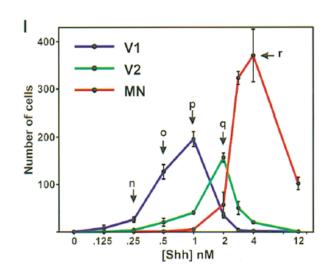
Notochord :


- remove notochord --- lose ventral cells types (floor plate and motor neurons), ventral cells assume more dorsal fates [pax6])
- Transplant in second notochord --- generate ectopic floor plate and motor neurons

- Notochord: produces inductive signal(s) --- can induce ventral fates --- floor plate later acquires similar inductive ability
- Neural tube cells: competent to respond to inductive signals by assuming different DV fates

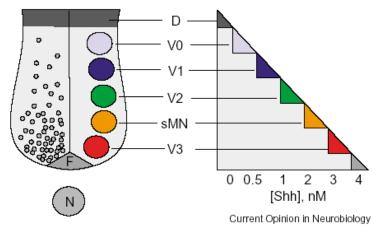
What is the molecular nature of the inductive signal?


- Secreted protein : Sonic hedgehog (Shh)
 - Produced by notochord and floor plate
 - Ectopic Shh induces ectopic ventral cell types (floor plate, motor neurons, ventral interneurons)
 - Can have effects on cells several diameters from source
 - Sonic hedgehog knockout mice lack most ventral cell types (floor plate, motor neurons, most ventral interneurons)



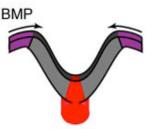
chick spinal cord

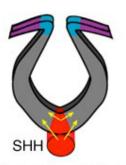
Shh can promote differentiation of distinct cell types at different concentrations

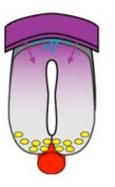

- Treat explants of chick neural plate with different concentrations of Shh
- 10 nM Shh --- neural plate cells become floor plate
- 1-4 nM Shh -- become motor neurons
- 0.1- 1nM Shh -- become ventral interneurons
 - Compare p, q and r --- 2-fold changes, large change in outcome

Shh can act as morphogen

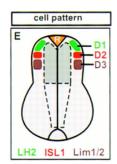

- There are multiple concentration thresholds for Shh signaling --- not just plus/minus
- Special type of inducer: generates graded response ---morphogen
- Shh: Higher concentration Shh more ventral fate
- Shh may act in graded fashion over long range to pattern V cells

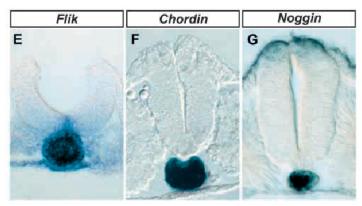



Briscoe and Ericson, Curr. Opin. Neur. (2001) 11:43.


Patterning of Dorsal Spinal Cord

- Dorsal neural development is independent of ventral induction
 - Eg., remove notochord -- still get dorsal markers
- Dorsal inductive signals:
 - Early: epidermal ectoderm flanking lateral edges of neural plate (planar)
 - Later: surface ectoderm contacts dorsal neural tube
- BMP's are important for this induction
 - Expressed in epidermal ectoderm
 - Can mimic ability of epidermal ectoderm to induce roof plate, neural crest, and dorsal interneurons



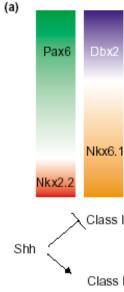


Specification of different dorsal fates

- Multiple BMP's expressed in nested pattern -- could act in combinatorial fashion on cells
- BMP's could act in graded fashion:
 - Zebrafish bmp2 mutant -- lose dorsal fates as ventral fates expand
 - Some concentration-dependent differences in vitro
- Competence of cells to respond to signals may also be important:
 - dorsal-most fates [roof plate and neural crest] determined early (neural tube closure), interneurons later --
 - Can recapitulate this in vitro --- newly formed neural plate cells
 + BMP's yield neural crest; if mature neural plate in vitro for
 24h then add BMP's get interneurons

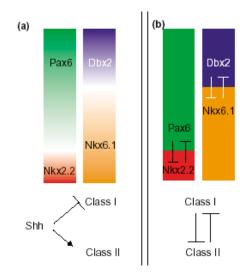
Interaction between Dorsal and Ventral induction programs

- BMPs shift in vitro response to constant concentration of Shh:
 - fates become more dorsal
- BMPs can antagonize responses to Shh --mechanism?
- Ventral signals inhibit BMPs: Notochord produces BMP antagonists

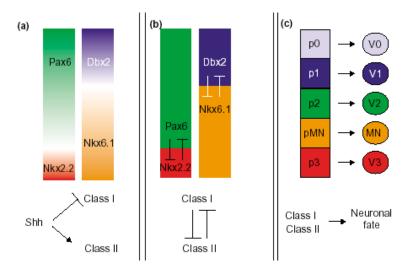


Interpreting gradations of Shh

- Progressive 2-3 fold changes generate 5 distinct ventral neuron types
- Neurons at more ventral locations require more Shh, neurons at less ventral locations require less
- DNA-binding transcriptional regulatory proteins are key intermediaries in mediating the dosagesensitive response


Current model for dosage-sensitive response to Shh

- Mediated through two classes of transcription factors:
 - Class 1: repressed by Shh in concentration-dependent fashion (Pax6, Dbx2)
 - Class 2: activated by Shh in concentration-dependent fashion (Nkx6.1, Nkx2.2)

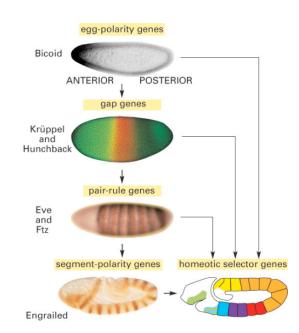

Cross-repressive interactions may sharpen boundaries

- Class I and Class II transcription factors regulate one another's expression
- Sharp boundaries can generate discrete responses

Three-step model for Ventral fate specification by Shh

- Class I and Class II transcription factors regulate one another's expression
- Sharp boundaries can generate discrete responses
- Different combinations of factors specify distinct identities

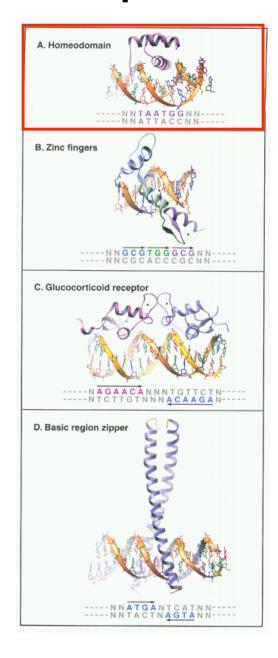
Open questions

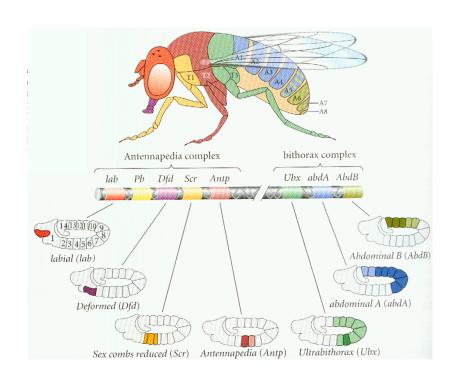

- Does Shh directly control Class I and/or Class II genes?
- Do Class I and Class II genes directly regulate one another?
- How is hedgehog signal transduced?

Precedent for graded responses in Drosophila

- Drosophila AP axis specified by gradient of Bicoid
- Bicoid protein high at anterior, low at posterior
- Bicoid loss of function --- lose anterior structures
- Extra doses of Bicoid gene --- anterior structures expand toward posterior

Early AP patterning in *Drosophila*: Progressive subdivision of embryo


- Different levels of Bicoid activate different "Gap genes" in different regions along AP axis
- These gap genes cross-regulate one another to set up sharper boundaries
- Gap genes act in combination to regulate downstream pair-rule genes
 --- which are expressed in narrower regions
- Segment-polarity genes are targets of pair-rule genes --- yielding even finer regional regulation
- Sets up pattern of homeodomaincontaining homeotic selector genes


Homeodomain proteins

- DNA-binding transcriptional regulators
- Contain 60 amino acid domain that binds DNA in sequence-specific fashion
- Different homeodomain proteins have some overlap in DNA-binding specificity ----
 - Associate with other transcriptional regulatory proteins
 --- confers additional specificity for targets --- such combinatorial specificity common theme in development

Common transcription factor families

Homeotic selector genes are expressed in specific patterns along AP axis

Homeotic selector genes specify AP identity

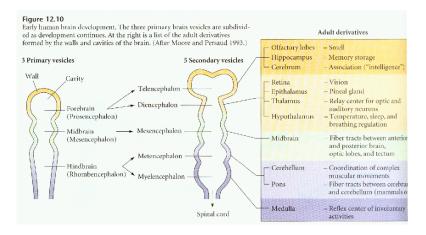
- Ectopic expression of homeotic gene can cause transformation of AP identity
 - Homeotic selector gene Antennapedia (Antp) normally expressed in abdominal region that gives rise to legs
 - If misexpressed in presumptive antennal region get legs on head

wild type

Antp gainof-function

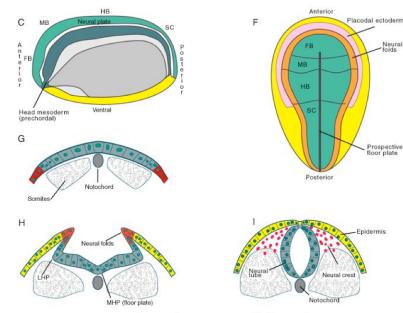
Homeotic selector genes specify AP identity

- Loss of homeotic genes: embryo lose distinctions between different AP positions
 - Homeotic selector gene Ultrabithorax (Ubx) normally expressed in abdominal region that gives rise to halteres (balancers) behind wings -
 - loss of expression --- halteres transformed into wings --- four-winged fly



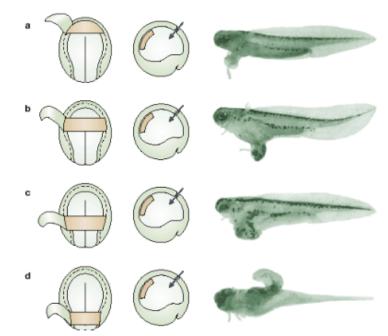
Ubx loss-of-function

Neural patterning along AP axis


- Vertebrate embryo:
 - Differential rates of proliferation lead to three brain vesicles
 - Prosencephalon (forebrain)
 - Telencephalon
 - Diencephalon
 - Thalamus, hypothalamus, optic vesicles
 - Mesencephalon (midbrain)
 - Rhombencephalon (hindbrain)
 - Metencephalon cerebellum
 - Myencephalon -- medulla
 - Spinal cord

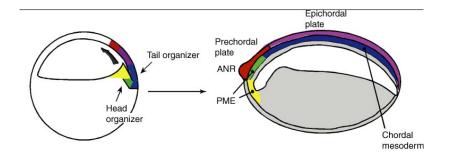
S.F. Gilbert, Developmental Biology, 6th edition, (2000) Sinauer.

Early AP patterning in vertebrates: Neurulation


- Bending of neural plate
 - Accompanied by convergence-extension along AP axis
- Dorsal edges fuse to form neural tube
- A/P axis differences already apparent

Copyright @ 2002, Elsevier Science (USA). All rights reserved.

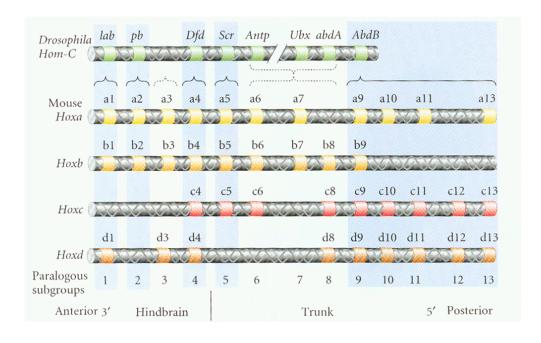
Organizer-derived cells pattern the nervous system along the AP axis


- Descendents of organizer cells come to lie beneath the neural tube along its length (archenteron roof)
- Otto Mangold (1933) transplanted four successive regions of the archenteron into blastula
- Anterior pieces induced anterior structures (balancers, eyes)
- Posterior pieces induced posterior structures (hindbrain,tail mesoderm)

Stern (2001) Nat. Rev. Neurosci. 2: 92

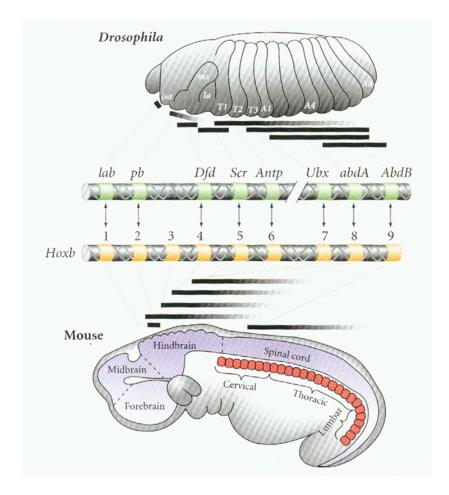
Two-step model for AP axis production

- Organizer has distinct along AP axis:
 - Head :will become Prechordal mesoderm (PME)
 - Tail: will become Chordal mesoderm (notochord and somites)
- "Activation" --- Initial neural induction associated with forebrain properties
- "Posteriorization" --- additional signals promote caudal character

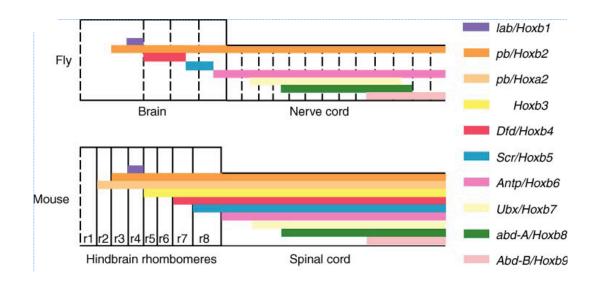


Two-step model for AP axis production

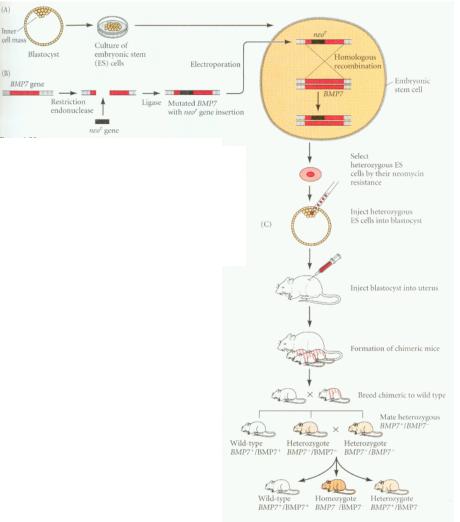
- "Activation" --- Initial neural induction associated with forebrain properties --
 - antagonists of BMP signaling promote forebrain differentiation
 - Anterior mesoderm produces BMP inhibitors
 - Lose anterior region in mouse noggin and chordin mutants
- "Posteriorization" --- additional signals promote caudal character --
 - FGF (receptor tyrosine kinase ligand), WNT, and Retinoic Acid can all promote posterior from anterior structures
 - All are expressed in chordal mesoderm


Homeodomain proteins also pattern AP axis in vertebrates

 Mammals contain 4 clusters of homeodomain proteins (Hox proteins) related to the fly homeotic selector genes


Hox genes show restricted expression patterns along AP axis from hindbrain to spinal cord

- Related genes in different species show related AP expression domain
- AP expression domain correlated with position in cluster



Hox genes and hindbrain patterning

- Hindbrain: indentations demarcate modular organization along AP axis: each segment termed a rhombomere
- Different combination of Hox genes expressed in each rhombomere
- Each rhombomere has different fate

Production of a targeted mouse knockout

S.F. Gilbert, Developmental Biology, Sixth Edition (2000) p.99

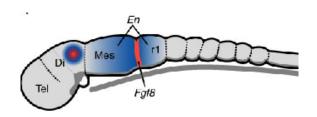
Hox genes contribute to hindbrain AP patterning

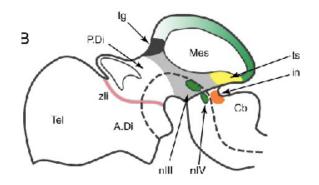
- Hoxb-1 normally highly expressed in rhombomere 4
- Hoxb-1 knockout mouse: rhombomere 4 (r4) now resembles rhombomere 2 (r2)
 - r4 motor neurons normally migrate caudally
 - In Hox-b1 knockout migrate laterally (like r2 motor neurons)

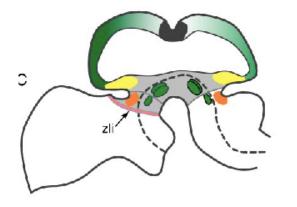
Hox genes contribute to hindbrain AP patterning

- Hoxb-1 normally highly expressed in rhombomere 4
- Hoxb-1 knockout mouse: rhombomere 4 (r4) now resembles rhombomere 2 (r2)
 - r4 motor neurons normally migrate caudally
 - In Hox-b1 knockout migrate laterally (like r2 motor neurons)

Homeodomain proteins also pattern anterior nervous system

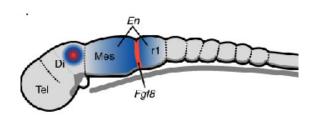

- Anterior to r2 express non-Hox homeodomain proteins
- Midbrain/hindbrain boundary: En1 and En2 (homologs of fly segment-polarity gene engrailed)
 - Lose this region in En1 knockout mice
- Forebrain: Emx1 and Emx2 (homologs of fly empty spiracles -- gap gene that patterns fly head/brain)
- Forebrain/midbrain: Otx1 and Otx2 (homologs of fly orthodenticle -- gap gene that patterns fly head/brain)
 - Otx2 knockout -- lose all head anterior to r3
 - Otx2 ectoderm-specific knockout -- forebrain converted to hindbrain --enlarged cerebellum at anterior of CNS

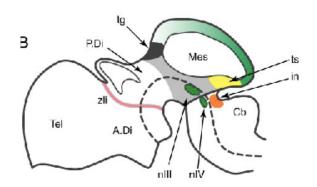

How is pattern of Hox gene expression set up in hindbrain?

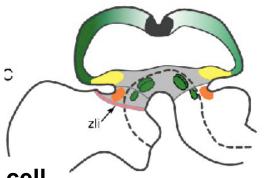

- Retinoids can help specify Hox expression
- Retinoic acid: vitamin A derivative
- Acts via Retinoic acid receptors (RAR's):
 - RAR's: Ligand-dependent DNA-binding transcription factors -bind promoters of target genes
- RA promotes posterior fates
 - Overexposure leads to expansion of posterior Hox genes into anterior regions and accompanying transformations of rhombomere fates --
 - Posterior high/ anterior low?
 - RA produced by somites near r7/r8 who express Raldh2 (RA synthetic enzyme)
 - Raldh2 knockout mice -lose posterior Hox gene expression, anterior Hox genes expressed only in posterior hindbrain
 - RA degraded by anterior regions that express Cyp26

Midbrain/anterior hindbrain patterning

- En1 and En2 expressed across boundary in graded fashion -- highest at boundary
- Fgf8 expressed on posterior side (r1 hindbrain --- cerebellum)
 - Implant Fgf8 bead into presumptive diencephalon -- transform into midbrain
 - AP polarity reversed -- mirror-image En gradient?
 - Fgf8 gone in zebrafish mutant Ace -- lose midbrain/hindbrain boundary as well as tectum (midbrain-derived) and cerebellum
 - Why do midbrain and r1 respond differently to Fgf8?



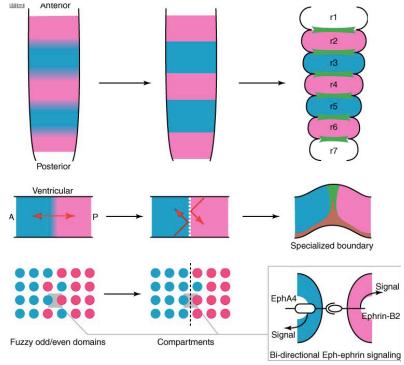



Midbrain/anterior hindbrain patterning

- En1 and En2 expressed across boundary in graded fashion -- highest at boundary
- Fgf8 expressed on posterior side (r1 hindbrain --- cerebellum)
 - Implant Fgf8 bead into presumptive diencephalon -- transform into midbrain
 - AP polarity reversed -- mirror-image En gradient?
 - Fgf8 gone in zebrafish mutant Ace -- lose midbrain/hindbrain boundary as well as tectum (midbrain-derived) and cerebellum
 - Why do midbrain and r1 respond differently to Fgf8?

Could differ in competence (due to distinct cell histories) or receive additional signals

Hindbrain segmentation


- Segmentation: break tissue into repeated set of similar modules --each segment often develops as a variations on a basic theme
- Hindbrain region: after neural tube closure eight regions separated by indentations (rhombomeres) transiently appear
- Each rhombomere gives rise to cells with distinct fates

Hindbrain segmentation

- Differential adhesion/interaction help establish boundaries and limit cell mixing facilitating each compartment's independent development
 - Two-segment repeat rule: odds mix with odds, evens with evens
- Lineage tracing experiments: inject single cells with vital dye, track progeny
 - Early injection --- clonal descendents appear in multiple rhombomeres
 - Inject after rhombomeres appear: descendents spread only within that rhombomere; at very late stages see apparent "violations" -- however, often reflects cell migrations after differentiation

Regulators of hindbrain segmentation

- Krox20 -- DNA-binding transcription factor
 - Expressed early on neural plate region that will form r3 and r5
 - Krox20 knckout: lose r3 and r5; r2, r4 and r6 fuse together
- Eph Receptor tyrosine kinases/Ephrin ligands :
 - Heterophilic "anti-adhesion" (repulsive) receptors --- we'll discuss these in more detail during axon guidance lectures
 - Eph receptors expressed in odd rhombomeres (depend on Krox20), Ephrin ligands expressed in even rhombomeres
 - Inhibit Eph receptors using truncated receptor --- get mixing across boundary

Next time

- Generation of cortex
- Neuronal migration
- Neuronal stem cells