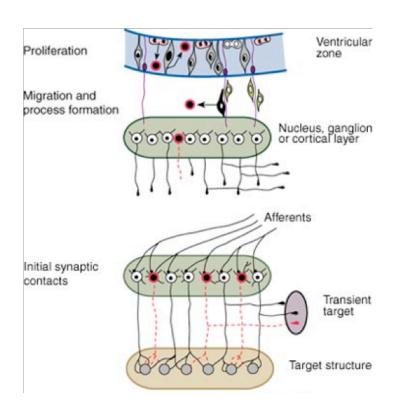
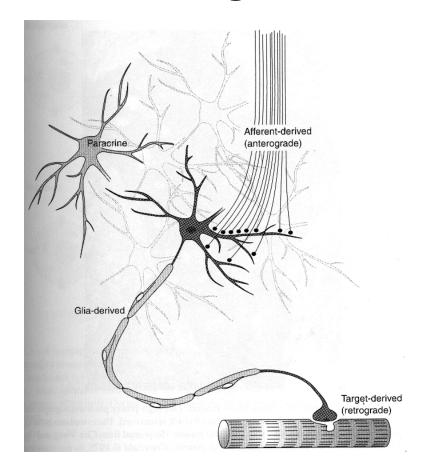

Cell Death and Survival I: Neurotrophic Hypothesis, Survival Factors/Receptors


Paul Garrity 7.68/9.013 March 31, 2004

Neuron loss is a normal part of development

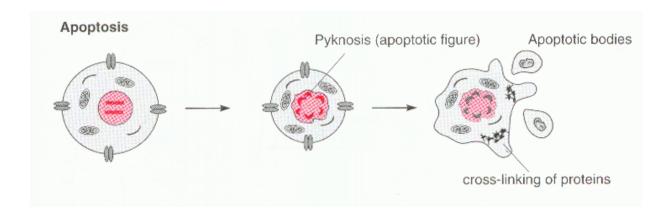
- A significant fraction of all neurons generated die
- Relative balance of neuron production and loss determines final numbers of neurons
- Important in disease, also, perhaps, in evolutionary change



Neurons die at multiple stages in development

Neurons depend on survival signals

- Survival often depends on receiving appropriate survival signals
- Neurons can receive survival signals from a variety of sources
 - Afferents (inputs) (anterograde)
 - Targets (retrograde)
 - Glia (glial-derived)
 - Distant sources (paracrine)

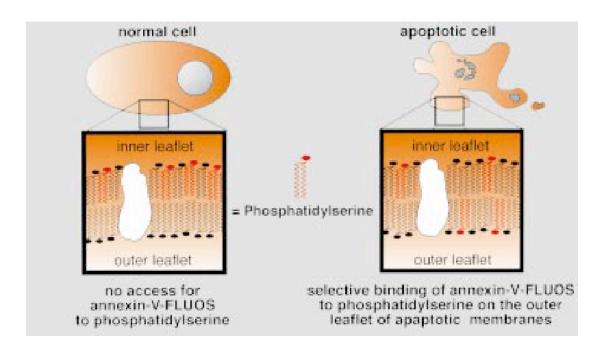


Discovery of Neuronal Cell Death

- Hooke (1665): first cells described from cork were actually cell corpses
- Carl Vogt (1842): saw dying cells in developing toad nervous system and at metamorphosis
- John Beard (1896) --
 - Followed fate of large sensory neurons in skate spinal cord (Rohon-Beard cells)
 - Saw these neurons differentiate and send out processes to ectoderm in embryo
 - These neurons then degenerated (functionally replaced by larval DRG neurons)
- Suggested that cell death can occur in a "programmed", predictable fashion

Programmed Cell Death (PCD)

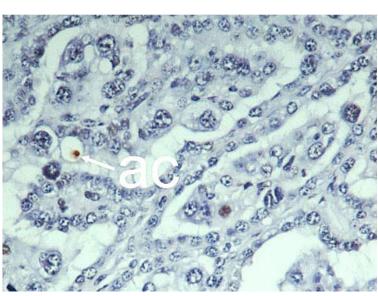
- PCD (aka Apoptosis): Controlled cell deletion
 - Dying cell has distinct morphological features
 - » Condensed cytoplasm and nucleus
 - » Nuclear fragmentation, membrane blebbing, organelles intact
 - » Condensed chromatin, DNA fragmentation



Common methods for measuring PCD

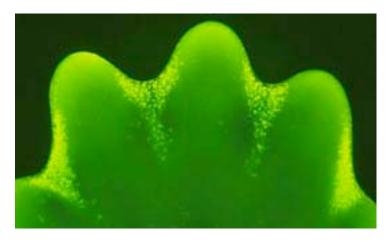
- Take advantage of properties of dying cells:
 - flipping of phospholipids in plasma membrane (annexin staining)
 - DNA fragmentation of DNA (TUNEL)
 - At late stages: holes in membrane (acridine orange)

Annexin V staining measures changes in membrane lipid location


- Phosphatidylserine is a phospholipid normally found only on inner leaflet of plasma membrane
- When cells undergo PCD lipids flip (flipases activated)
- Annexin-V binds phosphatidylserine
- Annexin-V only binds to unpermeabilized cell if lipid has flipped

TUNEL measures DNA fragmentation

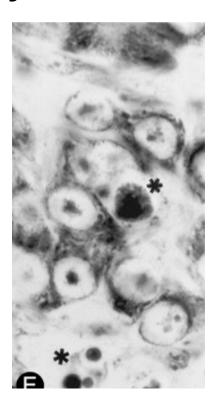
- TUNEL labeling: TUNEL (Terminal transferase UTP Nick End Labeling)
 - Terminal transferase: DNA/RNA polymerase that extends free
 3'-OH ends of DNA
 - DNA fragmentation greatly increases number of 3'-OH ends
 - Use terminal transferase to add labeled UTP to free 3'OH ends



TUNEL staining Bovine placenta

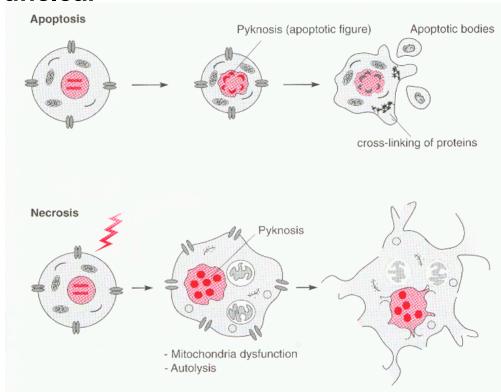
Acridine orange measures membrane integrity

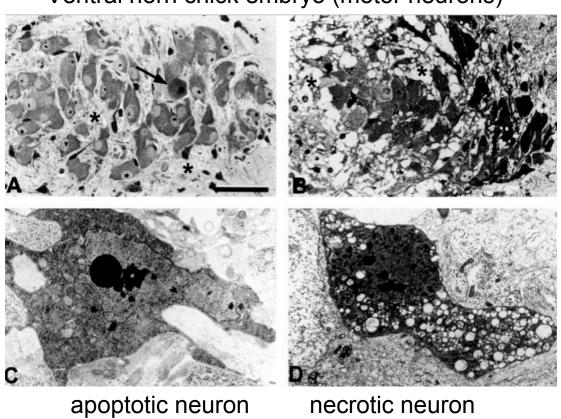
- Acridine orange (AO): a dye that binds nucleic acid and becomes fluorescent
- AO can't cross intact plasma membrane
- Dying cells eventually develop holes in their membranes
- AO gains access to intracellular compartment -- binds DNA/RNA --- cells fluoresce



AO staining: footplate mouse embryo E13.5

Morphology of neurons undergoing PCD

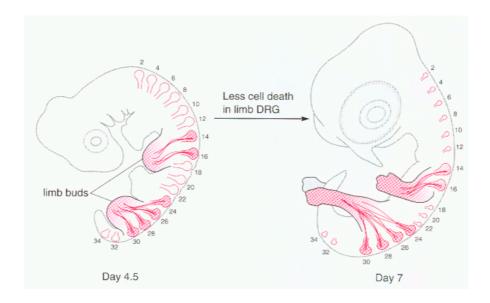

Apoptotic chick sensory and motor neurons


Cell death can also result from damage

- Necrosis: death in response to traumatic injury (eg, glutamate excitotoxicity)
- Necrotic cells have different appearance from apoptotic cells: how distinct these deaths really are at a mechanistic level is unclear

Ultrastructure (electron microscropic examination) of dying cells

Ventral horn chick embryo (motor neurons)

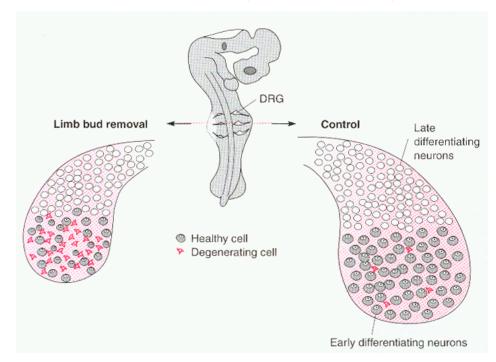


How is neuronal death regulated?

- Removal of peripheral target was known to prevent proper development of innervating neurons
- Viktor Hamburger/Rita Levi-Montalcini (30'-50's): showed that this was due to death of differentiated neurons and showed that the target could regulate neuronal death

Neuron death is common during normal development

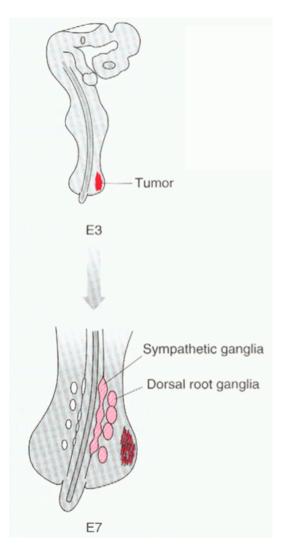
- Hamburger and Levi-Montalcini: demonstrated that large numbers of neurons die in normal animals (in DRGs ≈30%)
- Degree of death correlates with size of target
 - Less death in DRGs that innervate limbs


Amount of target tissue affects neuron number

- Number of neurons present affected by changing target target size
 - Remove limb bud --- fewer neurons
 - Add extra limb bud-- more neurons

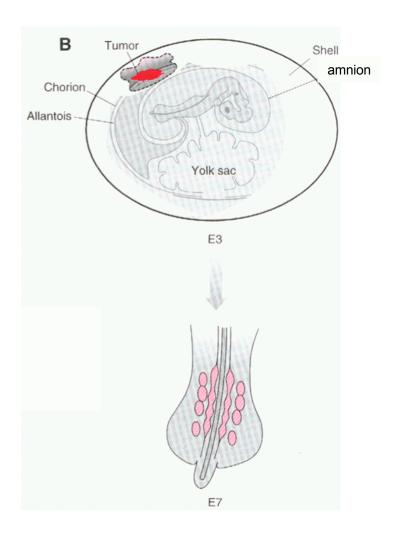
Target influences survival

- Removal of limb bud did not affect proliferation or generation of neurons
- Increased number of degenerating neurons

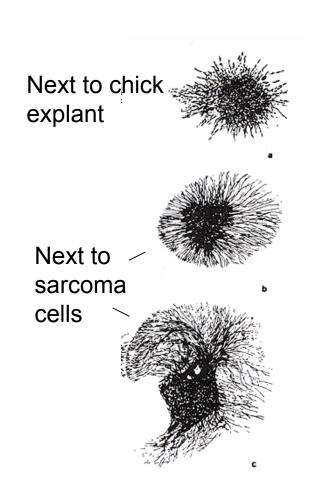


The Neurotrophic Hypothesis

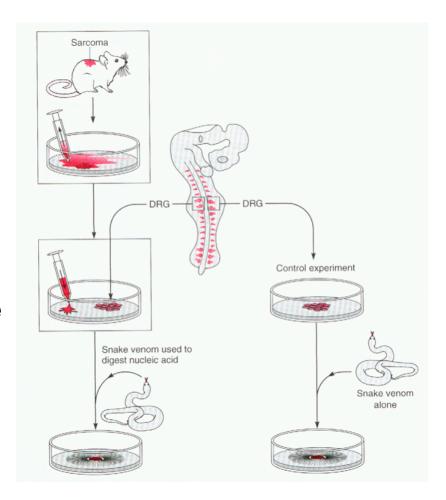
- Dependence of neuron survival on their targets suggested that the target cells produce signals that promote neuronal survival
- Neurotrophin hypothesis:
 - Immature neurons compete for target-derived trophic factors that are in limited supply
 - Only neurons that establish correct synaptic connections survive
 - Predicted existence of neurotrophic (nerve feeding) factors aka "neurotrophins"


Discovery of the first neurotrophin

- First step to identification of a neurotrophin
 - Elmer Bueker: 1948: grafted a mouse tumour into the body wall of a chick embryo --- saw sympathetic nerve fibers enter the tumour
- Hamburger/Levi-Montalcini:
 - tumour cells increased size of multiple ganglia
 - tumour also promoted sympathetic fibers to enter many abnormal regions --- including blood vessels


The neurotrophin could act at a distance

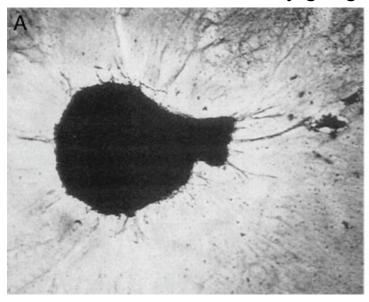
- Hamburger/Levi-Montalcini:
 - Got similar results when put tumour cells on embryonic surface--- diffusible factor

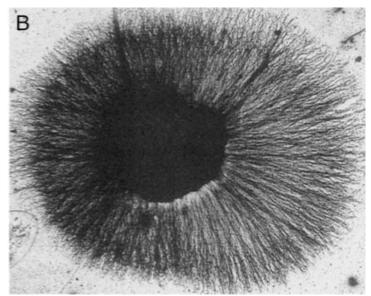

Demonstrating neurotrophic activity in vitro

- Levi-Montalcini placed chick sympathetic ganglia next to chick tissue or sarcoma cells
- Waited 24 hours
- Sarcoma cells promoted axon outgrowth
 - Also appeared to orient axon extension
- Argued the factor acted directly on neurons

Purifying Nerve Growth Factor (NGF)

- Levi-Montalcini joined by biochemist Stanley Cohen (1956)
- Fractionated extracts from sarcoma cells --- identified neurotrophin-enriched fraction : called it NGF
- To show NGF was a protein (not nucleic acid) used snake venom (contains high levels of phosphodiesterase)
- Snake venom superconcentrated source of NGF!

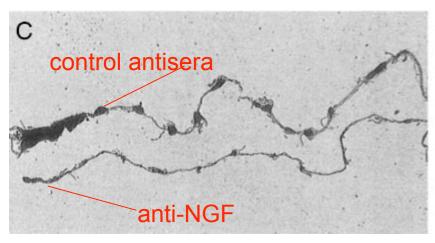

Purifying NGF

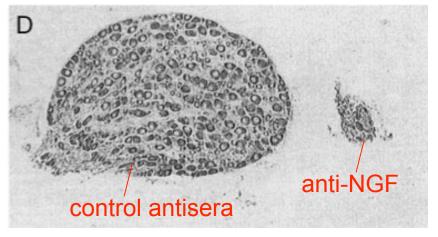

- Presence of NGF in snake venom suggested might be present in mouse salivary glands
- Abundant source --- used for large-scale isolation (1956) ... eventually protein sequencing (1971) and molecular cloning (1983) of NGF

Is NGF sufficient to keep neurons alive?

- Now had purified NGF (1956)
- Added NGF to explanted sympathetic ganglia
- Promoted strong survival and outgrowth response

chick sensory ganglia: 24 hour in culture




- NGF + NGF

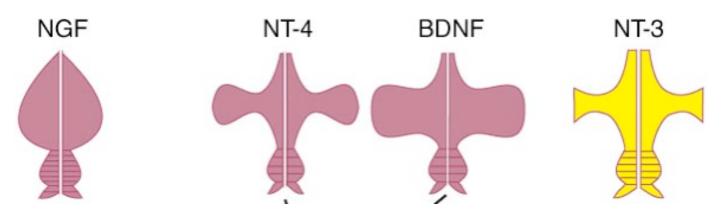
Is NGF normally necessary for survival?

- Made antisera against NGF (1960)
- Injected antisera into newborn mice
- Sympathetic ganglion neurons lost

Chains of sympathetic ganglia

Individual sympathetic ganglia

NGF isn't the only Neurotrophin

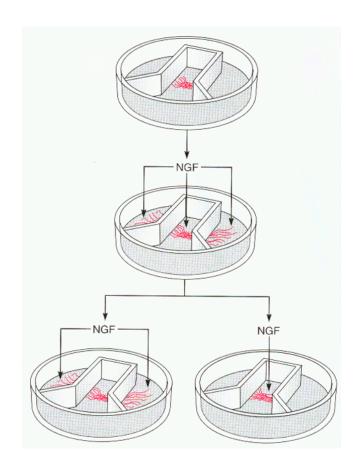

- Many neurons didn't respond to NGF
- These neurons did respond to factors present in tissue/cell line extracts
- Suggested the existence of additional neurotrophins

Discovery of Brain-Derived Neurotrophic Factor (BDNF)

- Yves Barde (1980's) --- saw that NGF did not promote neurite outgrowth from cultured rat retina
- Found that extract from pig brain promoted outgrowth
- Purified 1 microgram from 1.5 kg of pig brain ---microsequenced protein
- Cloned BDNF
- What did it look like?

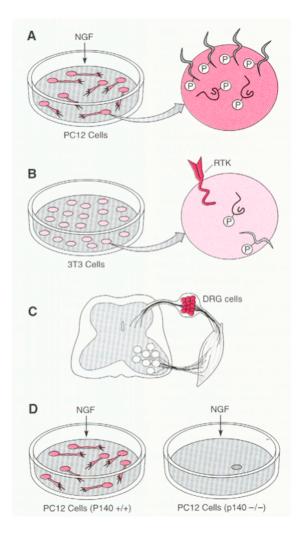
The neurotrophin family

- BDNF and NGF ≈50% identical in amino acid sequence
- Additional relatives identified by sequence
- All neurotrophins can promote neuronal survival: each has different spectrum of target neurons

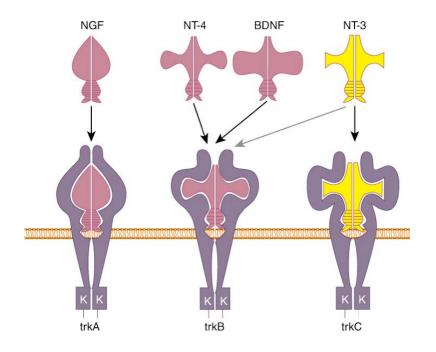


Neurotrophin receptors

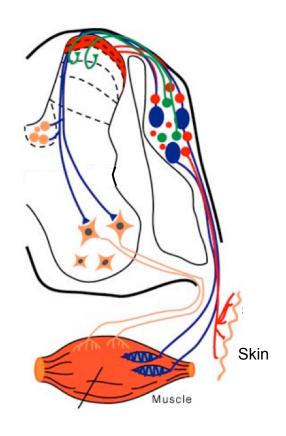
- Neurotrophic hypothesis: targets produce signal that promote neuronal survival
- Neurons predicted to express neurotrophin receptors
 - NGF bound with high affinity to sympathetic and sensory axons


NGF at axon tip prevents death

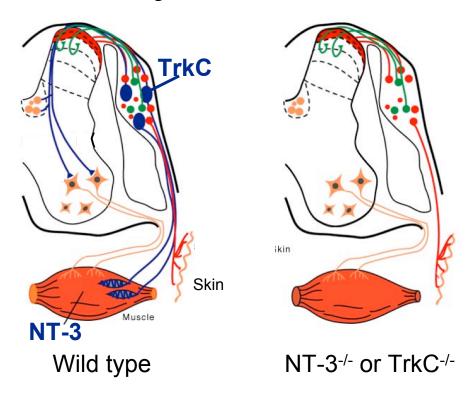
- Expose neurites and cell body of sympathetic neurons to different media
- Put NGF in either chamber--sufficient to rescue neuron from death (acts globally)
- However: only promote and retain outgrowth of neurites in direct contact with NGF (acts locally)


Identification of a receptor for NGF

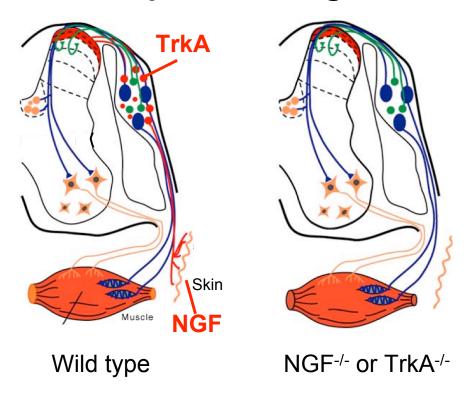
- NGF promotes tyrosine phosphorylation of proteins
- The proto-oncogene TrkA was found to be a receptor tyrosine kinase
- TrkA expressed in DRG neurons
- Eliminate TrkA from PC12 cells --- no longer respond to NGF
- TrkA is a receptor for NGF


Trk family of Neurotrophin receptors

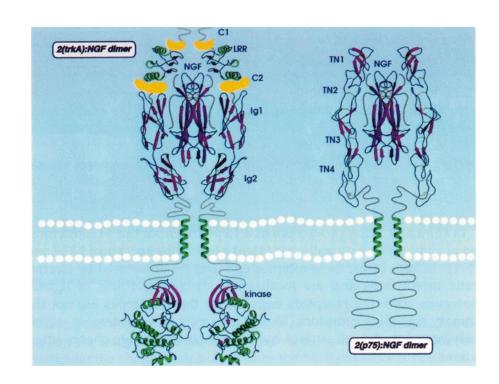
- TrkA belongs to a family of neurotrophin-binding receptor tyrosine kinases
- Each neurotrophin binds subset of Trk family members
- Neurotrophins form dimers --can bring together two
 receptor molecules and permit
 activation by crossphosphorylation
- Truncated forms of these receptors that lack the kinase domain are also made --- often by glia --- may act as ligand sinks or dominant-negative Trks


Neurotrophins and Trk receptors play important roles in neuronal survival

- Different subsets of sensory neurons express different Trk receptors
- Different targets produce different neurotrophins
- Mouse spinal cord:
 - Muscle produces NT-3, sensory neurons innervating spindle express TrkC
 - Skin cells produce NGF, thermo and pain-sensing neurons express TrkA


Loss of neurotrophin signaling leads to neuronal loss

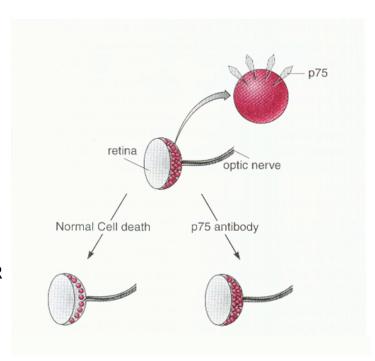
 Knockout of NT-3 or TrkC causes selective loss of spindle sensory neurons


Loss of neurotrophin signaling leads to neuronal loss

 Knockout of NGF or TrkA causes selective loss of temperature and pain sensing neurons

p75^{NTR}: second class of neurotrophin receptor

- p75^{NTR} Neurotrophin Receptor : binds NGF, BDNF, NT-3 and NT-4
- Not a receptor tyrosine kinase, but a member of the TNF receptor family
- TNF receptors are activated by binding of ligand -- recruit host of cytoplasmic signaling proteins
- p75^{NTR} and Trks activate distinct signaling pathways



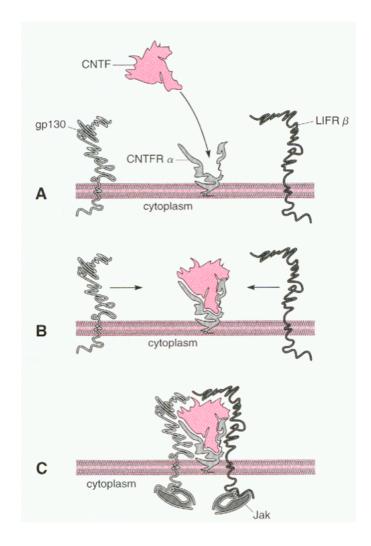
p75^{NTR} combine with Trks to generate diverse set of neurotrophin receptors

- p75^{NTR} originally called "low-affinity" receptor,
 Trks "high-affinity" receptors --- misnomer
- Both p75 and Trks bind neurotrophins on their own with similar affinity
 - p75 or Trks alone K_d's ≈10⁻⁹/10⁻¹⁰M
- p75 and Trks can associate to form receptors with higher affinity
 - p75+Trk K_d ≈10⁻¹¹M

p75^{NTR} has bi-functional role in neurotrophin signaling

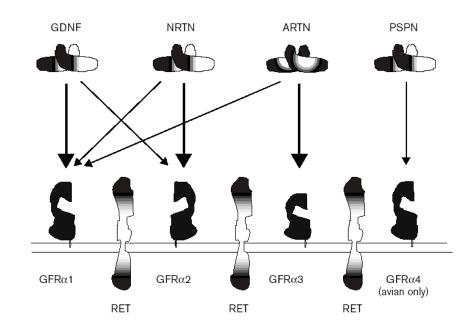
- p75^{NTR} can inhibit death (acting with Trks)
 - p75^{NTR} knockout mice show some minor sensory neuron loss
 - » not essential for Trk signaling
 - » neurons need higher doses of neurotrophins to survive
- p75^{NTR} can also promote death (acting alone)
 - In cells that don't express Trks, p75^{NTR} can promote neurotrophin-dependent death
 - » Antibodies against p75 can inhibit retinal ganglion cell death

Additional classes of signaling molecules also regulate survival

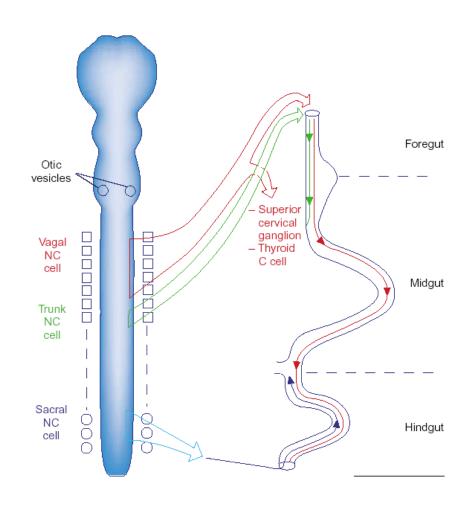

- Neurotrophins: NGF, BDNF, NT-3, NT-4
- Cytokines: CNTF, LIF, CT-1
- Growth Factors: EGF, PDGF, Insulins, FGFs, GDNF
- Interleukins (ILs)
- Tumour Necrosis Factors (TNFs)
- Colony Stimulating Factors (CSFs)
- Interferons (IFNs)

Cytokine-mediated survival

- Cytokines: originally described as growth factors for lymphocytes -also act as neuronal survival factors
 - Ciliary Neurotrophic Factor (CNTF): promotes survival of autonomic, DRG, hippocampal and motor neurons
- Cytokines associate with a cellsurface receptor complex that can activate the JAK/STAT pathway and modulate transcription
- Knockout of CNTFR

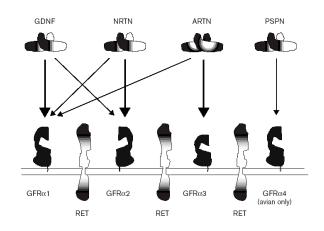

 causes

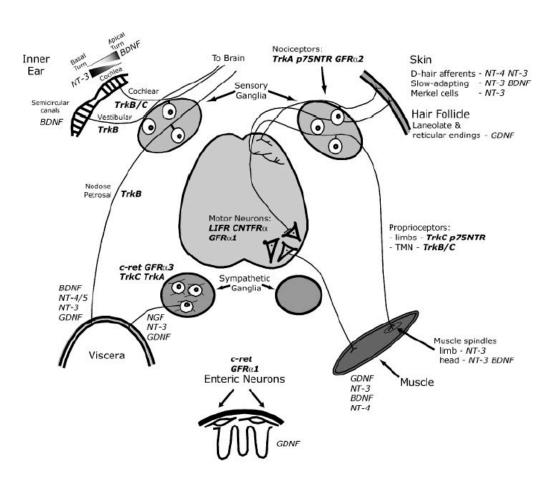
 increased motor neuron death


GDNF-family of survival factors

- Glial-Derived Neurotrophic Factor (GDNF):
 - Belongs to family of four factors
- Each binds to particular GFR
 ☐ subunits
- Signal through Ret receptor tyrosine kinase

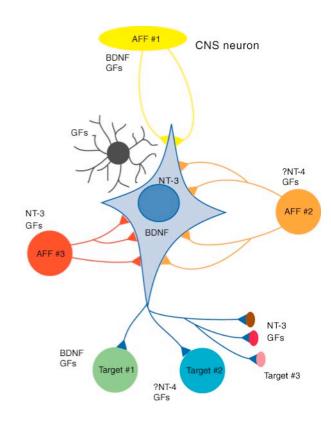
GDNF-family signaling in enteric neurons


- Enteric nervous system:
 - Derived from neural crest cells
 - Control digestive processes (motility, secretion)
- GDNF produced by the GI mesenchyme

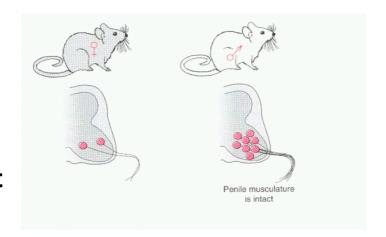

GDNF-family signaling in enteric neurons

- Ret-/- mice lack all enteric sympathetic neurons
 - see massive apoptosis among precursor population
- See partial loss in GDNF -/- and GFR

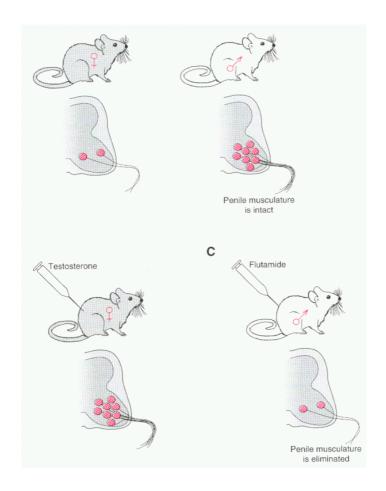
 ☐ 3 -/- -- likely redundancy among GDNF-family members
- Ret loss-of-function in humans causes Hirschprung's disease
 - congenital absence of parasympathetic innervation in the lower intestinal tract



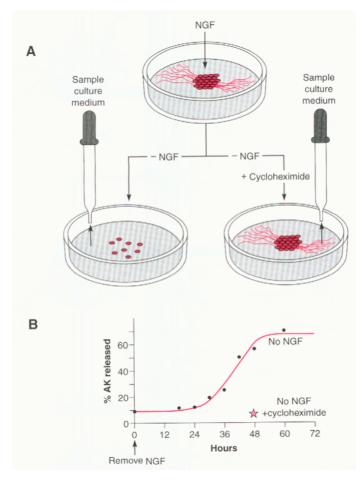
A diversity of trophic signals function throughout the PNS


Survival factors in the CNS

- CNS neurons produce and respond in vitro to neurotrophins and other survival factors
- Effects of knockouts much less pronounced than in PNS (see elevated apoptosis in hippocampal and cerebellar granule cells in TrkB-/- mice)
- May reflect greater diversity of possible sources in CNS vs PNS
 - Multiplicity of inputs, targets, glia etc...

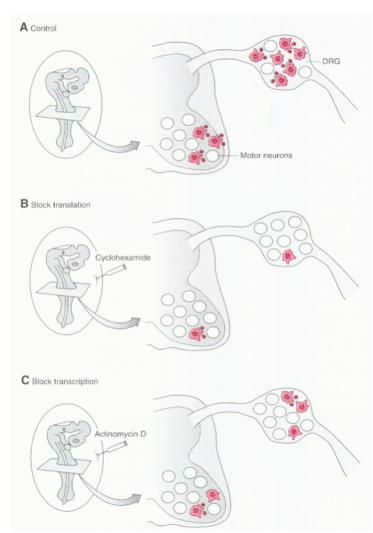

Endocrine control of neuronal survival

- Hormonal signals, including sex hormones, also influence patterns of neuronal survival
- Rat spinal cord contains motor nuclei housing motor neurons that innervate muscles in penis
 - Present in males
 - Nearly absent in females
- Sexual dimorphism due to death of these neurons in females


Endocrine control of neuronal survival

- This sexual dimorphism is under hormonal control
- Treat females with testosterone: cell death decreases in these nuclei and motor neurons survive
- Castrate males and treat with testosterone antagonist: cell death increases and motor neurons don't survive

Cell death is an active process


- Originally thought that neurons die of passive starvation in absence of trophic factors
- 1988: Eugene Johnson's group found that neuronal cell death can be delayed by blocking protein synthesis in vitro
- Sympathetic neurons die within 48 hours in culture without NGF
- If block translation, survive
- Thus: Cell death requires protein synthesis -- death is not just starvation

AK : adenylate kinase: cytoplasmic enzyme

Cell death is an active process in vivo

- Treat chick embryos for 10-12 hours with inhibitors of transcription or translation during peak time of motor neuron and DRG cell death
- In each case, see increase in number of neurons and decrease in number of neurons undergoing cell death

Regulation of cell death

- Cell death is abundant during neuronal development
- Neurons rely on a host of trophic factors to survive
- Trophic factors initiate signal transduction events in the receiving cell
- Cell death is an active process -- cells activate a death program
- Next time:
 - The core cell death machinery
 - Positive and negative regulation of the cell death machinery --- including, how trophic factors interface with the cell death machinery

Significance of K_d

- K_d = k_{on}/k_{off}
 K_d = equilibrium dissociation constant
 K_a = 1/K_d = association constant
 k_{on}= association rate constant
 k_{off}= dissociation rate constant
- K_d can be used to estimate lower limit to lifetime of complex --- because k_{on} can't exceed ≈10⁹ M⁻¹ sec⁻¹

Two types of binding sites for NGF

- Put labeled NGF on chick sensory neurons
- See two sets of binding sites
 - Low affinity (Kd ≈ 10 ⁻⁹ M)
 - High affinity (Kd ≈ 10⁻¹¹ M)
 - Low affinity sites ≈ 10X more abundant than high affinity sites

Primer on protein binding

- Affinity --- strength of binding
- Specificity --- preference of binding to target versus non-target sites
 - High affinity, high specificity: growth factor/receptor
 - High affinity, low specificity: MHC-peptide
 - Low affinity, high specificity: T cell receptor to MHC-peptide

Significance of relative affinities

- Two classes of NGF receptors:
 - Low affinity (Kd ≈ 10⁻⁹ M)
 - High affinity (Kd ≈ 10⁻¹¹ M)
- High affinity NGF sites will be largely occupied at NGF concentrations that will fill only a few percent of low affinity sites