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Abstract

B Recent work suggests that fluctuations in dopamine deliv-
ery at target structures represent an evaluation of future events
that can be used to direct learning and decision-making. To
examine the behavioral consequences of this interpretation,
we gave simple decision-making tasks to 66 human subjects
and to a network based on a predictive model of mes-
encephalic dopamine systems. The human subjects displayed
behavior similar to the network behavior in terms of choice
allocation and the character of deliberation times. The agree-

INTRODUCTION

Even for the simplest creatures, there are vast complexi-
ties inherent in any decision-making task. Nonetheless,
any creature has limited available time in which to arbi-
trate decisions. Decision-making is likely to possess auto-
matic components that may have direct relationships to
the underlying neural mechanisms. Previously, decision-
making theories have been based on formal, top-down
approaches that produced normative strategies for de-
cision-makers, that is, they prescribed strategies that
ought to be followed under a predetermined notion of
the goal (Bernoulli, 1738; Luce & Raiffa, 1957; von Neu-
mann & Morgenstern, 1947).! Although normative ac-
counts may produce functional descriptions of behavior
that match experimental data, they do not yield a well-
specified and testable relationship to potential neural
substrates. Recent work suggests the existence of covert
neural mechanisms that automatically and unconsciously
bias decision-making in human subjects (Bechara,
Damasio, Tranel, & Damasio, 1997). Consonant with this
latter work, recent work on midbrain dopaminergic neu-
rons suggests that their activity may participate in the
construction of such covert signals and thereby provide
a more bottom-up explanation for decision-making
strategies employed by animals (Egelman, Person, &
Montague, 1995; Montague, Dayan, & Sejnowski, 1996;
Montague, Person, Dayan, & Sejnowski, 1995; Schultz,
Dayan, & Montague, 1997).

Specifically, studies on neuromodulator delivery in be-
having animals (Aston-Jones, Rajkowski, Kubiak, & Alex-
insky, 1994; Ljungberg, Apicella, & Schultz, 1992;
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ment between human and model performances suggests a
direct relationship between biases in human decision strate-
gies and fluctuating dopamine delivery. We also show that the
model offers a new interpretation of deficits that result when
dopamine levels are increased or decreased through disease or
pharmacological interventions. The bottom-up approach pre-
sented here also suggests that a variety of behavioral strategies
may result from the expression of relatively simple neural
mechanisms in different behavioral contexts. Hl

Mirenowicz & Schultz, 1996; Romo & Schultz, 1990;
Schultz, 1992; Wise, 1982; Wise & Bozarth, 1984) suggest
that changes in dopamine delivery represent errors in
predictions of the time and amount of future rewarding
stimuli (Montague et al., 1996). Models based on this
interpretation account for physiological recordings from
dopamine neurons in behaving primates (Montague
et al., 1996; Schultz et al., 1997) and capture foraging
behavior of bees (Montague et al., 1995). This computa-
tional interpretation suggests that a behavioral meaning
may be associated with dopamine delivery: Increases
from baseline release mean the current state is “better
than expected” and decreases mean the current state is
“worse than expected” (Egelman et al., 1995; Montague
et al., 1995, 1996; Quartz, Dayan, Montague, & Sejnowski,
1992). In this paper, we explore the hypothesis that this
behavioral interpretation of fluctuating dopamine deliv-
ery provides one simple bottom-up model of how
dopaminergic (or related) projections implement gen-
eral constraints that influence ongoing decision-making
in humans. Such a model provides useful meeting
grounds for the psychology and neurobiology underly-
ing human decision-making.

RESULTS

The experiments shown in Figure 1 assay choice behav-
ior under conditions in which every allocation strategy
earns the same long-term return. The primary difference
among the tasks is the local structure in the reward
functions. In the tasks displayed in Figure 1a, b, and c,
humans and networks converge quickly to a stable strat-
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Figure 1. Four Reward Distri-
butions (with no clear opti-
mum). Subjects were
instructed to maximize long-
term return in all four tasks
(panels a, b, ¢, d). The reward
given after each selection is a
function of (1) the button se-
lected and (2) the subject’s
fraction of choices allocated

-

A

Reward

o

to button A over the past 40
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lines with diamonds show the
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tion; the crosses show the
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button B. The unmarked line
indicates the expected value
of the reward for a fixed allo-
cation to button A. For each
subject, the square marks the

0.5

@]

Reward

o

Allocation to A

0.5 1
Allocation to A

A— /

average allocation and average 0
earned reward after a trial of
250 selections. (a) In this re-

0.5

Allocation to A

05 1
Allocation to A

ward paradigm, the expected
value of the earned reward is

the same regardless of choice allocation. Subjects’ average allocations lie just to the right of the crossing point of the functions (mean alloca-
tion: human = 0.411 + 0.003, network = 0.380 = 0.001; 7z = 18).(b) Reward functions reflected around the crossing point. Subjects cluster at a
higher allocation to A, suggesting that the attractant is the crossing point and not some local features experienced as the crossing point is ap-
proached. This point is further strengthened in Figure 2 (mean allocation: human = 0.605 + 0.002, network = 0.596 = 0.001; 7 = 19).(c) The
grouping of subjects near the crossing point is generally unaffected by local features such as the larger differentials in reward for allocations to
A between 0.7 and 1.0. (mean allocation: human = 0.430 + 0.003, network = 0.374 + 0.001; z = 19). (d) Pseudorandom reward paradigm. Sub-
jects receive a fixed, pseudorandomized sequence of reward yielding a mean close to 0.3. Subjects display a mean allocation of 0.501 £ 0.002
(n = 19), confirming a central tendency in these two-choice tasks. Network mean allocation = 0.498 + 0.007, 7 = 19. These reward functions
were chosen loosely for their general shape; our observations indicate that the overall shape, but not the finer details, influences the general be-

havior displayed by subjects.

egy, making choices that tend to equalize the return from
the two alternatives. Such behavior is described as event-
matching.” The mean allocation to choice A settled close
to the crossing points in the reward functions, with a
slight central tendency. The existence of the central ten-
dency was confirmed using a randomly distributed re-
ward schedule (Figure 1d): Under these random returns,
both humans and networks equalized their allocations to
A and B.

To spotlight how a simple underlying mechanism can
appear to express different behaviors in different con-
texts, we engineered two more choice tasks (Figure 2).
In the first, the optimal strategy lies at the crossing point
of the reward functions; in the second, an allocation at
the crossing point is highly suboptimal. Figure 2a quan-
tifies the subjects’ behavior on the first task: Most sub-
jects (18 of 24) maximized their longterm return.
However, in the second context (Figure 2b), the same
attraction to the crossing point blinds them to higher
long-term profit: Over half (14 of 25) of the subjects
converged to the crossing point even when other allo-
cations yielded a much higher return. As shown, higher
allocations to A yield increasing reward. The result dem-
onstrates the strong influence of the crossing of the
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reward functions because both the optimal allocation
point and the central tendency point lie to the right of
the crossing point. The histograms in Figure 2 show the
results of the network on the same tasks. Given the
simplicity of the model and the many levels of human
strategies, we are not surprised to find differences in the
histogram, such as the rightward tails in the human data.
However, the result is instructive in the character of the
match: The majority of subjects allocated their behavior
at the crossing point of the reward functions, which, in
Figure 2b, is highly suboptimal. Variation in the free
parameters over an extremely broad range does not
qualitatively change the behavior of the network >

The results of Figures 1 and 2 can be understood by
noting that the network tends to implement a greedy
decision-making strategy and that the cost functions as-
sociated with these tasks possess global minima at the
crossing point of the reward functions. In a greedy strat-
egy, the decision-maker compares the expected returns
from alternative choices and then selects the one that is
likely to be most proﬁtable.4 On a task such as the one
pictured in Figure 2a, greedy strategies will converge
quickly to the crossing point of the reward functions
(Borgstrom & Kosaraju, 1993; Kilian, Land, & Pearlmutter,
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Figure 2. Context dependence of strategy selection for model and human. Subjects and networks pursue optimal or suboptimal strategies de-
pending on the context of the task. Lines with diamonds show the reward from a selection of button A, crosses show the reward earned from
button B, and the unmarked line indicates the expected value of the reward for a given allocation. (a) In this reward paradigm, the optimal allo-
cation to A is the same as the crossing point of the reward functions (0.35). Subjects approximately maximize their reward on this task (mean
allocation = 0.366 + 0.002, # = 26). Cumulative allocation histograms from humans and networks show that both groups stabilize around an al-
location to A just to the right of the crossing point of the reward functions (network mean = 0.383 + 0.0009, 7 = 26). (b) This reward para-
digm demonstrates that over half the subjects (14 of 25) settle into a stable behavior at the crossing point even when such a strategy is vastly
suboptimal. Here the most profitable strategy is total allocation to A. Subjects are drawn to the crossing point even when it lies to one side of
both the optimal allocation and central tendency allocation. The solid line represents reward when button A is chosen, and the dashed line

when button B is chosen.

1994). For the task shown in Figure 2a, a strategy con-
verging to the crossing point will be called optimal,
whereas in Figure 2b it may be called risk-averse. Such
observations verify that different behaviors can be ex-
pressed by a simple underlying mechanism expressed in
different behavioral contexts.

The model captures not only human allocation behav-
ior but also the deliberation times between choices. In
all tasks, human subjects had no time pressure between
selections. In spite of the broad range of interselection
delays (mean = 0.793 sec, SD = 2.01 sec), human sub-
jects demonstrated stable choice-dependent dynamics
(i.e., choice allocation was independent of deliberation
time).

Figure 3 shows some typical examples of the interse-
lection delays for the task shown in Figure 2a. Note that

although the subjects’ allocations to button A fluctuate
smoothly around the crossing point in the reward func-
tions (0.33), the delays are uncorrelated (average corre-
lation coefficient = —0.2). Such data suggest that subjects
update their internal models at the time of each button
choice, in a fashion independent of the delay between
choices. The network model, updating its weights only
at each choice, captures the delay-independent dynamics
of the humans.

Traditional decision-making theories (especially those
following the tradition of expected utility theory) are
deterministic (i.e., preference of A over B is either true
or false). Such theories have consistently fallen short in
explanations of observed human-decision making, both
in terms of choices and the distribution of deliberation
times (Busemeyer & Townsend, 1993). To date, delay
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Figure 3. Decision dynamics
are independent of delays in
both humans and networks.

Human

(a) The interselection delays 1
and allocation to A are plotted
for a typical subject perform-
ing the “matching shoulders”
task (seen in Figure 2a, so 0.8 +
named because the matched
peaks of the reward func-
tions). Note that the delays
vary widely, even while the al-
location to A smoothly oscil-
lates around the crossing
point (0.35) of the reward 0.4
functions. In the model, the os-

cillations come about because )
the difference in rewards from
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subjects allocation to A, over
all subjects, yielded a correla-
tion coefficient of 0.0117.

(b) Network’s behavior on the
same task. The network’s de-
lays are defined as being pro-
portional to the number of
transitions made between alter-
natives before the model com-
mitted to a selection (see
definition of decision function
Ds in the legend of Figure 5).
Network correlation coeffi-
cient = 0.0137. The constant

Delay (sec)

of proportionality that relates
a network transition to sec-

onds is taken to be on the or-
der of 200 msec, which is the

Allocation to A

physiologically characterized
time of dopamine transients
in alert monkeys performing
similar tasks (Romo & Schultz,
1990).

distributions have only been successfully captured by
nondeterministic models (e.g., Carpenter & Williams,
1991). Perhaps preference and deliberation times cannot
be studied separately; our model addresses both proper-
ties of decision-making by appealing to a common un-
derlying mechanism.

The relationship of choice preference and delay be-
havior suggests some new interpretations of lesion, dis-
ease, and drug effects on dopaminergic systems. We
begin by simulating a blunting of the dopamine neuron’s
output signal 3(#): Such a blunting might be expected
following a blockade of dopamine receptors. Results are
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shown in Figure 4a, where the model is presented with
the decision task from Figure 1a but with a 90% reduc-
tion in the magnitude of 8(#). The mean allocation to button
A shifts from the crossing point (0.35) to random (0.5)
with no concomitant change in interselection delays.
Figure 4b tests the model on the same task but with
a nonspecific decrease in the average amount of
dopamine delivered to targets; the baseline (average) of
3(p) is reduced with no change in its sign or magnitude
(Figure 5). The result is a dramatic increase in delay times
with no change in choice allocation. The model follows
its usual strategy, however; it takes a prohibitively long
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Figure 4. Some predicted effects of pharmacology, lesion, and disease. (a) The blockade of dopamine receptors (as by neuroleptics) is mod-
eled by blunting the effects of dopamine release at the target regions. Using the task in Figure 3a, the average choice allocation shifted from
0.35 allocation to A to random (0.5 allocation to A). Interselection delays (not shown) were unaffected. (b) The destruction of input to
dopamine neurons (as by a lesion in the cortex) or the degeneration of dopaminergic neurons (as in nigro-striatal pathway loss in Parkinson’s
disease) is represented by shifting 3(¥) to a lower baseline level. Thus, while dopamine neuron output continues to fluctuate appropriately, the
reduced baseline component leads to a dramatic increase of interselection delays. Choice strategies are unaltered but are interpreted as being
prohibitively long (mean allocation to A = 0.369 + 0.001 in normal network, 0.347 + 0.002 in diseased network, 7z = 26). Mean delay in the nor-
mal network = 1.99 + 0.002 sec and in the diseased network mean delay = 7.29 + 0.012 sec. The graph is shown only to 16 sec; maximum de-

lays reached 151 sec in the diseased network.

time to make a choice. Observers of such a symptom in
a patient might interpret this change as a motor deficit,
or “sluggishness.” Such a nonspecific baseline reduction
in dopamine levels and the ensuing increase in the
time-to-selection is reminiscent of symptoms associated
with Parkinson’s disease. This disease is characterized
biologically by degeneration of dopamine cells in the
substantia nigra® and typically includes a slowing in the
initiation and execution of voluntary movements and
motor sequences.

The results in Figure 4b suggest that Parkinson’s pa-
tients may retain the ability to construct appropriate
error signals to influence ongoing decision-making—
however, the dramatic decrease in average baseline
dopamine levels prevents the proper use of this infor-
mation at the level of target structures. In other words,
the nonspecific decreases in baseline dopamine levels

could result in dramatic changes in motor behavior:
Although the plans remain intact, the time to arbitrate a
selection among plans increases (see Berns & Sejnowski,
1996, for a similar interpretation of sequence selection).

Accordingly, the model predicts that a return to nor-
mal baseline dopamine levels, which would return fluc-
tuations of neuromodulator release to an appropriate
operational range, would restore selection times to nor-
mal. This interpretation is consistent with the systematic
and highly successful use of L-dopa (dopamine precur-
sor) with Parkinsonian patients (Agid et al.,, 1989;
Hornykiewicz & Kish, 1987).

A reduction in the baseline (average) of 6(f) might also
result from damage to prefrontal cortex. Humans with
damage to the ventromedial sector of the prefrontal
lobes present with deficits in decision-making and plan-
ning skills (Bechara, Damasio, Damasio, & Anderson,
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Figure 5. Bottom-up interpre-
tation of decision-making
model. Choices A and B are
represented by separate pat-

terns of cortical activity, each Action Choice
associated with a modifiable Pattems Of 1
weight w(,t), where i indexes s
-]
A or B.In the figure, w’s are Comcal b’-ﬁ
represented by the two open » E %
circles in the intermediate 1
layer. P is a linear unit repre- E“é'
senting a midbrain neuron 0
whose output is =1 0 1
80 = 16 + V() + b Intermediate oM

r(®) is input from pathways
representing rewarding stimuli
(marked “Reward” in figure),

Release of Neuromodulator

Layer (weights)
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W(t) represents a scalar sur-
prise signal which arrives
from the cortex in the form
of a temporal derivative of net
excitatory activity, b(?) is P’s
baseline activity level, which
is set to 0. Here, W(?) is taken as a one time-step difference V() — V(& — 1) where V(¥) = X; xG,Dw(,1), and x(,0) is the activity associated with
choice 7 at time ¢. In this case, there are only two x’s, each representing one of the choices and each using a binary activity level: 1 when a
choice was being “considered” and 0 otherwise. 3(¥) is a signed quantity that we interpret as fluctuations in dopamine delivery to targets

above (8(2) > 0) and below (8(#) < 0) baseline levels (see Montague et al., 1995, 1996). In this form, 8(?) is interpreted as an ongoing prediction
error between the amount of reward expected and the amount actually received (Sutton, 1988; Sutton & Barto, 1987, 1990). This prediction er-
ror is used to direct selections and to update the weights w(z,£) (the internal model).

Making selections using ongoing prediction error: The model chooses among alternatives by making random transitions from one alternative to
another, which induces fluctuations in the output 3(#), of neuron P. The output 3(¥) controls the probability ps of making a selection on a given
transition:

G ~gp—— Reward

Prediction Error

1
—md()+b

Ds=
1+e
(see Notes 3 and 4).

Updating the internal model: Weights w associated with each alternative 7 are updated (after a selection) according to the Hebbian correlation
of P’s output with cortical activity:

w(i)new = wW(@)ota + rx(i, t - 1)3(2)

where A is the learning rate. Varying the network’s parameters had little effect on the final behavioral outcome. The model relies on a linear
predictor; however, it obtains a stochastic component to its decision behavior through the function ps. A simple model suffices here because its

basic principles are robust.

1994; Bechara et al., 1995; Eslinger & Damasio, 1985;
Damasio et al., 1990; also see Damasio’s Descartes’ Error;
1985). Patients can be well aware of contingencies of the
decision and can enumerate differences between
choices but have difficulty concluding with a decision.
In the model, as before, such a lesion to the frontal lobes
might be represented by a sustained decrease in the
baseline (average) of d() because of the lack of cortical
influence on the output of midbrain dopamine neurons.
This change would significantly lower the probability of
making a choice independent of the capacity to catego-
rize or assess the value of the choice.

METHODS

As described in the legend of Figure 5, our model is
based on a simplified anatomy of the mesencephalic
dopamine systems. We begin with the hypothesis that
such an anatomy comes with commensurate computa-
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tional principles (Egelman et al., 1995; Montague et al.,
1996; Quartz et al., 1992; see also papers on temporal
difference algorithms, e.g., Sutton, 1988; Sutton & Barto,
1987, 1990).6 Specifically, we note that the rich arboriza-
tions of midbrain dopaminergic axons could deliver a
global, scalar prediction error to the cortex. The cortex,
driven by incoming polysensory information, could con-
struct and deliver convergent neuronal activity to mid-
brain nuclei in the form of a temporal derivative. The
output of a midbrain neuron is used in dual roles: (1) to
update synaptic weights after each selection and (2) to
bias the process of making a selection. In other words,
each option the model “looks at” has a commensurate
pattern of cortical activity (which is filtered through
associated weights); simply “considering” the choice (not
selecting it) will generate the 8(¢¥) signal, and such a
signal is used to commit to decisions (see full descrip-
tion, Figure 5).

To highlight the behavioral consequences of such an
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interpretation of dopamine delivery, we designed vari-
ations of a two-choice decision task (Herrnstein, 1990,
1991; Vaughan & Herrnstein, 1987), which was given to
human subjects and to the network. The humans were
required to select between two large buttons, labeled A
and B, displayed on a computer screen. After each selec-
tion (with a mouse pointer), a vertical, red slider bar
indicated the amount of reward obtained. Subjects were
instructed to maximize their long-term return over 250
selections. There was no time limit for making choices.
The reward earned at each selection was a function of
past selections. Specifically, the computer kept track of
the subject’s last 40 choices and the relative fraction of
those choices (e.g., the percentage of selections that
went to choice A) determined the amount of reward
earned at the next selection of A or B. Figure 1 shows
the fraction of choices to A (of the last 40 selections)
versus the reward to be earned if the next choice is A
or B. Thus, each task amounted to a game wherein the
subject’s “opponent” (the reward functions) employed a
fixed strategy. The speed with which the opponent re-
sponded to the subject’s choices was defined by the
window size over which the fraction of choices from
button A was computed.

CONCLUSIONS

The results verify that for simple decision-making tasks,
especially when information about the task is impover-
ished, human choice behavior is capable of being char-
acterized by a simple neural model based on anatomical
arrangements, physiological data,and a set of well-under-
stood computational principles. The mesencephalic
dopaminergic system fulfills the requirements of the
model; however, we note that related projections (such
as the cerulean noradrenergic system) may fulfill or
contribute to the same roles. We engineered choice tasks
that highlight certain behaviors of this system (such as
suboptimal choice allocation) and presented the task to
66 human subjects. The close match of the human and
model data supports a direct relationship between biases
in human decision strategies and fluctuating neuromodu-
lator delivery. Although humans surely have sufficient
memory capacity to learn longterm strategies, their
mechanisms appear to be tuned to use short-term infor-
mation to arbitrate decisions under rapidly changing
reward contingencies. This latter property is reminiscent
of the behavior of honeybees on similar decision-making
tasks (Montague et al., 1995). The bottom-up approach
presented here suggests that a variety of behavioral
strategies may result from the expression of relatively
simple neural mechanisms in different behavioral con-
texts. Further, the approach suggests that certain motor
deficits may share the same underlying cause as deficits
of decision-making.
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Notes

1. The first decision-making theories were normative, meaning
they prescribed what strategies humans ought to follow under
a predetermined notion of the goals. Such theories, (e.g., the
utility theory, first introduced by Bernoulli, 1738; von Neumann
& Morgenstern, 1947) held long influence on economic theory.
However, the systematic study of decision-making has exposed
sets of reproducible behaviors that cannot be fit into traditional
normative frameworks of rational choice (cf. Kahneman &
Tversky, 1984). This has given rise to descriptive theories, some
of which are more axiomatic in nature (e.g., prospect theory,
Kahneman & Tversky, 1979) and some of which suggest archi-
tectural components that could implement the theories (Gross-
berg & Gutowski, 1987). However, no approaches thus far yield
a well-specified and testable relationship to potential neural
substrates.

2. Event-matching is a well-described behavior displayed by
both animals and humans in choice situations. It is defined by
the “matching” of behavioral investments to the return on
those investments, expressed concisely by

B Y
IB; %Y;

where Y; is the yield (return) earned from any given behavioral
investment, B;. Although matching behavior is not always opti-
mal, it is generally adaptive (see Herrnstein, 1989, 1990).

3. Initial starting points along the x axis were varied from 0.0
to 0.95. The learning rate (A) was varied from 0.1 to 0.9. The
slope m in Figure 1 was varied from 3 to 50. The offset b was
varied from 0.0 to 1.0. Such variations modified the size of the
basin of attraction, the dynamics of the approach, and the
character of the delays. However, the convergence to the cross-
ing points was unchanged (but see Figure 4).

4. While a decision is being arbitrated, § = V; — V,.; (see legend
of Figure 5). To illustrate, when the model “looks” from choice
A to choice B, 8 = wg — w4, allowing the probability of selection
(see Figure 5 legend) to be written as

1
ps - 1+ e m(wy —w,) +b
or (setting b = 0)
e "MWy
ps - e MWy 4 o T,

which relates our model to a Boltzmann (or “soft-max”) choice
mechanism, wherein the probability of making a selection is a
function of the changing weights. Because the weights will be
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maximally influenced by the most recent rewards, and the
probability of selection will be highest for the larger weight,
this mechanism engenders a greedy decision-making strategy.
5. There are dopamine cells in the substantia nigra that also
appear to report prediction errors in future appetitive stimuli,
suggesting that the model may explain some aspects of the
deficits involved in losing the majority of these cells in Parkin-
son’s disease (see Schultz, Apicella, & Ljungberg, 1993).

6. The goal of temporal difference methods is to learn a func-
tion V(t) that anticipates (predicts) the sum of future rewards.
As demonstrated in Montague et al. (1996), this simple compu-
tational theory captures a wide range of physiological record-
ings from midbrain dopamine neurons in alert primates.
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