
Alternation in the repeated Battle of the Sexes

Aaron Andalman & Charles Kemp

9.29, Spring 2004

MIT

Abstract

Traditional game-theoretic models consider only stage-game strategies.
Alternation in the repeated battle of the sexes is a robust empirical finding
that defies explanation by these simple strategies. We consider a natural
extension of stage-game strategies — Hidden Markov models with two
states — and develop a belief-learner that alternates in self-play and when
playing against humans.

1 Introduction

Consider two employees who commute to the same workplace. Both prefer to
travel in the same car because they save gas money and enjoy the company, but
both enjoy the journey most when the other person drives. Each morning when
the employees assess their transport options they play a version of the “Battle
of the Sexes” (see Table 1).

This game pits cooperation against the desire to achieve the maximum re-
ward on each move. Both players maximize their payoff by coordinating their
play and choosing the same strategy. Each player, however, prefers a different
strategy. This situation is common in everyday social settings, and in many
cases the game is played repeatedly by the same group of players.

The behavioral patterns that humans exhibit in repeated play were recently
studied by McKelvey and Palfrey [2]. They show that subjects playing repeated
Battle of the Sexes often fall into a stable pattern of alternation between the two
pure-strategy Nash equilibria (see Figure 1). Alternation is a simple strategy
that seems intuitive in real-life situations such as our carpool scenario. Standard
learning models, however, are unable to account for this behavior.

My Car Your Car
My Car 1,2 0,0
Your Car 0,0 2,1

Table 1: Battle of the Sexes payoff matrix.
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Figure 1: Repeated “Battle of the Sexes” often results in alternation. Each
point shows the average payoff for a pair of players after 50 rounds. The payoff

matrix was

[

18, 6 3, 3
3, 3 6, 18

]

, and the cluster at [12, 12] reflects alternating play.

The purple dots are the Nash Equilibria. The triangle encloses the regions of
reward space which can be achieved in principle. (Reproduced from [2].)

Most learning models consider stage-game strategies. Each player maintains
a probability distribution P over all his possible moves, and once equilibrium
has been reached a player’s move at time t + 1 is conditionally independent of
his previous move given P . A natural way to allow the possibility of alternation
is to give a stage-game player two or more internal states. Now the player
maintains n probability distributions, one per state, and we must specify how
the player moves between states.

Many of the traditional questions that have been asked about stage-game
learners carry over to learners with internal states. One issue that has been
extensively explored with simple learners is the difference between reinforcement
learning and belief learning. A reinforcement learner is concerned only with its
own history of moves and payoffs, and tends to choose strategies that have
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worked well in the past. A belief learner models its opponent directly, and
chooses its own move based on a prediction about the opponent’s next move.
Hanaki and colleagues have recently described a reinforcement learning model
that considers learners with internal states [1]. In this paper we develop a belief
learner that models its opponent as a player with internal states. Our primary
goal is to develop a learner that can alternate when playing itself and when
pitted against a human.

2 Model

We developed several belief-learners that model their opponents using hidden
Markov models (HMMs) with two states. A two-state HMM has five parameters:

• p1, the probability that the model starts out in state 1

• q11 and q22, where qii is the probability that a learner in state i at time t

remains in state i at time t + 1

• o11 and o22, where oii is the probability that a learner in state i chooses
move i

A one-state HMM plays a stage-game strategy — it chooses each move with
a flip of a biased coin. Most previous work on belief learning has considered
models of this sort. In particular, fictitious play amounts to modeling one’s
opponent with a one-state HMM. Working with two-state HMMs maintains
continuity with this previous work but expands the set of possible strategies.

Each of our learners is a combination of two components: a strategy for pre-
dicting the opponent’s next move and a decision rule that chooses a move based
on this prediction. We introduce two predictive strategies and two decision
rules.

2.1 Predictive Strategies

We impose a memory restriction to allow the learners to respond quickly to
nonstationary opponents. Each predictive strategy takes only the previous n

moves into account. Following Miller’s research on human short-term memory,
we set n = 7.

2.1.1 Bayesian integration

A full Bayesian learner begins with some prior distribution over the space of
HMMs and predicts its opponent’s next move by integrating over this space.
Suppose that the opponent chooses move xi at time i. Then the distribution
for xt+1 is

p(xt+1|xt, . . . , x1) =
p(xt+1, xt, . . . , x1)

p(xt, . . . , x1)
(1)
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Suppose x = {x1, . . . , xt} and z = {z1, . . . , zt}, where zi is the hidden state
of the opponent at i. Then p(x) can be computed by summing over all possible
hidden state sequences z:

p(x) =
∑

z

p(x|z)p(z) (2)

The memory restriction limits the length of the sequences z that must be con-
sidered and makes it possible to compute this sum. We show how to compute
p(x|z): p(z) can be computed similarly.

Given x and z, suppose that mij is the number of times the opponent played
move j when in state i.

p(x8|x7, . . . , x1) =

∫

p(x8|θ, x7, . . . , x1)p(θ|x7, . . . , x1)dθ (3)

p(x|z) =

∫∫

p(x|z, o11, o22)p(o11, o22)do11do22

=

∫∫

om11

11 (1 − o11)
m12(1 − o22)

m21om22

22 p(o11, o22)do11do22

If we use independent beta priors with parameters α and β for o11 and o22

it is straightforward to show that:

p(x|z) =

(

Γ(α + β)

Γ(α)Γ(β)

)2
Γ(m11 + α)Γ(m12 + β)

Γ(m11 + m12 + α + β)

Γ(m21 + α)Γ(m22 + β)

Γ(m21 + m22 + α + β)

For each of the five parameters we use a uniform prior distribution (α = β =
1).

2.1.2 Point estimates: EM

Instead of integrating over the space of HMMs, the opponent’s move can be
predicted using a single HMM that describes his previous moves well. A suit-
able HMM can be found using the EM algorithm. The algorithm starts off at
a random setting of the HMM parameters, and iteratively improves them until
it reaches convergence. It may not find the best HMM overall, but is guaran-
teed to converge to a local maximum of the posterior density. Unlike Bayesian
integration, the EM algorithm is relatively efficient and can be used even when
memory capacity is increased well beyond seven units.

In psychological terms, an EM player is a player who jumps to one plausible
explanation for his opponent’s behavior and fails to consider other potential
explanations. We ran EM with 5 random restarts. If enough random restarts
are used, EM will find the best HMM with high probability, but with only 5
restarts EM may settle on a HMM that is good, but not ideal.
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2.2 Decision Rules

Given a prediction about the opponent’s next move, a maximizing rule chooses
the response that maximizes expected income on the next move. A matching

decision rule chooses between the moves in proportion to their expected payoffs
on the next move. The maximizing rule is deterministic (in the absence of ties),
but the matching rule is stochastic.

3 Results

The combination of two predictive strategies and two decision rules produces
four players. Each player has the capacity to alternate, and will use this capac-
ity whenever it decides with high probability that its opponent is alternating.
Whether alternation emerges in self-play is another matter entirely.

3.1 Self-Play

Alternation in self-play is a demanding test of a learning algorithm. Consider-
ations of symmetry show that alternation can never emerge between identical
deterministic players. The symmetry problem is a challenge for all approaches,
but self-play also introduces problems for belief learners in particular. When
playing itself, a belief-learner can never form a perfectly accurate model of its
opponent. Attempting to build such a model leads to an infinite regress: player
A’s move depends on B’s move which depends in turn on A’s move, and so on.

Alternation in self-play might therefore seem like a quixotic goal. It never
occurs on truly principled grounds, and will only be seen if randomness pushes
a pair of identical players in the right direction. Even so, different strategies for
including randomness can be more or less psychologically plausible. A player
that chooses its first five moves at random but is otherwise deterministic might
sometimes achieve alternation, but seems less humanlike than a player that uses
a stochastic decision rule throughout. Incorporating randomness in a psycho-
logically plausible manner is a worthy challenge.

Figure 2 summarizes the patterns of play when each of our models is played
against itself. Each model played 100 50-move matches against itself, and each
point plotted shows average rewards over the last 20 moves of a 50-move match.
Points near (1.5, 1.5) represent matches where the players succeeded in alter-
nating.

The top left plot shows that the maximizing EM player often alternates
when pitted against itself. This player uses a deterministic decision rule, so the
symmetry between the players can only be broken if EM sometimes falls short
of the true MAP parameter estimates. Some sequences of moves are assigned
approximately the same probability by several different HMMs, and the EM
algorithm may settle on any of these.

Analyzing individual matches shows that alternation occurs most often when
player 1 has played [2, 1, 2, 2] and player 2 has played [1, 2, 1, 1]. Imagine this
situation and put yourself in the position of player 2. Table 2 shows two HMMs
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p O T LL next move

Estimate 1

[

0
1

] [

0.74 0.26
0 1

] [

0 1
0.67 0.33

]

-1.3864

[

0.32
0.68

]

Estimate 2

[

0
1

] [

1 0
0 1

] [

0 1
0.5 0.5

]

-1.3863

[

0.5
0.5

]

Table 2: Two possible inferences about the move history [2, 1, 2, 2]. p, O and
T are the prior state distribution, observation matrix and transition matrix
respectively. Given these parameters, LL is the log likelihood of the move
history and the final column shows predictions about the opponent’s next move.

that model your opponent’s moves. If you choose the second HMM, you should
play 1 on the next move since you are using the maximizing decision rule. But
if you choose the first HMM, you should play 2, since 2∗P (opponent plays 1) <

P (opponent plays 2). Note that the log likelihoods of these two HMMs are close
to identical.

The remaining three plots in Figure 2 show that the matching EM player
sometimes alternates, but neither of the integrating players succeeds in alternat-
ing. The maximizing integrating player does particularly poorly when played
against itself. Since this player is deterministic, a symmetry argument shows
that it can never achieve any reward.

A comparison between the matching EM player and the matching integrating
player is particularly interesting. The crucial difference between the two is that
the EM player considers only one explanation for the opponent’s behavior, but
the integrating player considers many. Jumping to a premature conclusion may
not be theoretically optimal, but it does seem psychologically plausible. Without
this property, the integrating Bayesian learner can only achieve alternation in
self play if we increase the prior probability assigned to HMMs that alternate.

3.2 Human opponents

Both the EM players will alternate against a human player who is determined
to alternate, and so will the integrating players if we increase the memory size
beyond seven. We collected data from 16 subjects (8 pairs) playing each other
in Battle of the Sexes (Figure 3a) and played the maximizing EM model against
each subject’s recorded moves (Figure 3b). The cluster of points near [1.5,1.5]
in Figure 3b shows that our EM model alternates against recorded human data.
However, the subjects may have played differently when faced with our model’s
choices.

To address this possibility, we asked three experimental subjects to play the
maximizing EM player directly. One out of the three fell into a stable pattern
of alternation. Even though the sample size is tiny, this result shows that the
maximizing EM player can indeed alternate when played in real time against a
human.

Our model is more willing than humans to be exploited by its opponent.
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Figure 2: Average rewards when each player plays itself. Each point shows
average rewards over the last 20 moves of a 50 move match. Random jitter has
been added to each point so that the size of each cluster is visible.

This problem can be seen in figures 2 and 3(b), which show clusters of points
at the opponent’s preferred pure strategy Nash equilibrium. Figures 1 and 3(a)
suggest that human players rarely give in to such exploitation. Humans rarely
allow each other to get away with unfair rewards.

4 Discussion

The maximizing EM player is a belief learner that alternates when playing
itself and humans in the repeated Battle of the Sexes. This player should also
perform sensibly when asked to deal with other payoff matrices. Regardless of
the game, the maximizing decision rule means that it will always choose the
optimal response when playing a pure-strategy opponent. Provided that we
endow it with a large enough memory, it will converge to optimal play when
pitted against any opponent playing a stage-game strategy (mixed or pure).

Our belief-learning approach overcomes some of the limitations of Hanaki’s
model, which performs reinforcement learning over the set of all two-state de-
terministic finite automata. Our model alternates right out of the box, but
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Figure 3: Average rewards for (a) humans versus humans and (b) maximizing
EM model versus recorded human data. Payoffs are averaged across the final
15 rounds of play.

Hanaki’s model requires a long run ‘pre-experimental’ phase before it is ready to
alternate. Hanaki’s algorithm enumerates all deterministic two-state automata,
and therefore does not scale easily to automata with more than two states. Our
probabilistic approach can readily handle automata with many internal states.

It is not clear that the maximizing EM player alternates for the right reasons.
People may alternate because alternation is the best sustainable strategy. To
return to our carpool scenario, I might prefer it if you drove me to work every
day, but our friendship is unlikely to survive if I try to force you into this
equilibrium. Our model, however, has no notion of a sustainable strategy –
it just tries to achieve the best possible reward on the next move. A more
sophisticated belief learner might address this weakness by considering the effect
of his own moves on his opponent’s play. This approach, however, leads directly
to the infinite regress mentioned previously. Adding some notion of fairness
to the model might also address this shortcoming, but fairness is difficult to
formalize in a principled way.

Even though alternation in the Battle of the Sexes is just one of many
game theoretic phenomena, we believe that it raises an important general point.
Alternation is a strategy that is intuitive and simple, but even so it is beyond
the scope of most traditional learning models. Attempting to characterize and
work with the class of strategies that people actually consider is an important
project for behavioral game theory.
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5 Experimental Methods

We ran a total of 19 subjects in repeated Battle of the Sexes experiments. Eight games
of human versus human play were recorded, and three games of human versus our
model. All data was collected using a Matlab graphical user interface (see Figure 4).
Prior to each game, instructions were displayed in text and read aloud. Subjects were
asked not to communicate with their opponents. The payoff matrix in Table 1 was
used in all games. Each game consisted of 30 rounds. During each round subjects
selected a strategy, either red or green, by pressing a key. The keyboard was hidden
from view to prevent subject seeing each other’s moves. After each round the two
players’ selected strategies, current payoffs, and cumulative payoffs were displayed. At
the end of the game, each subjects rewards were provided in the form of M&M candies.

Figure 4: Matlab program for data collection.
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