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I study the emergent behavior in the self-play of simple value function based reinforcement 
learning algorithms in an iterative two player general-sum game. The players are assumed 
to have limited knowledge of the game. Therefore learning algorithms only use information 
about their own choice and recieved reward histories to compute a value function based on 
which actions are chosen stochastically. Two related algorithms are studied, with fixed 
points that correspond to matching and Nash equilibria respectively. Linear stability 
analysis is used to probe the dynamics about the fixed points. Linear analysis shows that 
the matching equilibrium is stable, while the algorithm with the Nash equilibrium has 
marginal stability. Numerical simulations suggest that the Nash equilibrium is unstable for 
this class of algorithms and that algorithms with equilibria lying near the matching equilib-
rium are progressively more stable.



Introduction
Many  interactions  between  people  can  be  phrased  in  terms  of  the  principles  of  game  theory.  We  may

think of people as players choosing from a space of actions, each of which produces a different outcome

or  payoff.  What  makes  the  problem  interesting  is  that  the  payoff  that  a  player  receives  generally

depends  strongly  on  the  actions  of  the  other  players  in  the  game.  Classical  game  theory  provides  a
mechanism  to  study  optimal  behavior  in  games  involving  rational  players.  Nash  equilibria,  which  are

the  mathematically  optimal  outcome  in  games,  have  been  well  studied  and  characterized.  Recently,

however,  studies  suggest  that  people  and  animals  behave  differently  from  that  predicted  by  classical

game theory.  The new field of behavioral  game theory has arisen to explain  the behavior  of humans in
game and decision theoretic scenarios.

As agents capable of learning and generalization, it is natural to believe that even if people start playing

games with suboptimal strategies, they will eventually begin to get better and with practice reach optimal-
ity.  With  this  in  mind,  we  propose  to  study  the  emergent  behavior  of  simple  learning  agents  that  play
each  other  repeatedly  in  simple  one-stage  general-sum  games.  From  this  exercise,  we  hope  to  learn

general  principles  underlying  the  behavior  of  learning  agents  such  as  people  and  animals  in  game

theoretic situations.

In this work,  we study the behavior of two simple  reinforcement learning agents. It has been suggested
that learning based in the theory of reinforcement learning [Sutton & Barto 1998] is used by animals at

both the neural and behavioral level [Schultz 2002; Barraclough, Conroy, Lee 2004]. In this framework,

we  make  the  simplifying  assumptions  that  people  are  only  given  access  to  their  choice  and  reward

histories,  but  have  no  knowledge  of  the  other  players  actions  or  outcomes.  We  further  assume  that
playeres  use  stochastic  strategies  where  actions  are  chosen  from  a  probability  distribution  which  is

learned and fine-tuned over time. Given this, we may think of the learning problem in terms of estimat-
ing the correct probability distribution over actions when given one's own choice and action histories.

Learning Algorithms and Notation
We consider  two related  reinforcement  learning  algorithms  for study.  These  algorithms  both use value
functions to estimate the rewards to be gained by choosing a given action. In our system, each player has

a  value  function  over  the  discrete  action  space  of  two  choices.  The  value  of  each  action  is  updated

independently.
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Here, ai HtL  is the action chosen by the ith player at time t with a probability  of p j
i ,  and r j

i is the reward

obtained on the same play as a consequence of the choices of the two players for that play according  to
the  fixed  payoff  matrices  Ri for  each  player.  q j

i  is  the  value  function  estimated  by  player  i  for  action  j

over time using reward and choice histories. d j,,ai HtL  is the usual Kronecker delta function, which in this

case is 1 whenever the jth action is taken at time t, and is 0 otherwise.

The  essential  difference  between  the  two  algorithms  lies  in  the  decay  term.  Algorithm  1  only  allows  a
decay of a value function every time the action corresponding  to that function is taken. In Algorithm 2,

on  the  other  hand  the  value  function  steadily  decays,  regardless  of  action  choice.  The  latter  might  be

interpreted  as  a  memory  leak,  while  the  former  simply  attempts  to  correct  the  estimated  value  of  an

action at every opportunity given.
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Methods
Analysis  of  stochastic  algorithms  is  complicated.  By  construction,  there  is  no  way  to  predict  the  exact

trajectory  of  the  algorithms  from any  given  starting  point.  However,  we  can use  statistical  methods  to

study the properties of the distribution of trajectories in phase space. A first order approximation might
be made  by  simply  considering  the  mean  of  the distribution.  Here,  we study  the  behavior  of  our  algo-
rithms  in  the  mean  by  considering  the  average  affect  that  our  updates  might  have  on  the  state  of  the

system. This is known in physics as the mean-field  approximation.  Applying this leads to the following

sets of equations, where the d's are replaced by the probability of a particular action being taken.
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A further  simplification  is  to consider  the continuous  time version  of the system.  This  allows  us to use

techniques  from  continuum  dynamical  systems  theory  to  study  the  behavior  of  the  two  players.  This

version  of  the  system  results  from  considering  the  limit  where  the  updates  made  are  infinitesimally
small and the algorithm is allowed to run for a very long time. The dynamical system now looks like:
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(7)Yqj
i° HtL] = -pj

i Hf qj
i @tD - Xrj

i \L
Algorithm 2

(8)Yqj
i° HtL] = - Hf qj

i @tD - pj
i Xr j

i \L
This  is  a  4-dimensional  nonlinear  system,  since  there  are  two  players,  each  with  two  actions.  A  self-

normalizing  scaling  given  by  equation  (1)  translates  the  value  function  to  the  more  interesting  action

choice probabilities. Interestingly, we are really only concerned with a 2-dimensional projection of value
function equations given by p1

i , since p2
i  is constrained to be (1-p1

i ).

Given this  system of  equations,  we may compute its  fixed  points  and their  stability  in order to achieve

qualitative  understanding  of  the  dynamics.  The  stability  of  the  fixed  points  may  be  probed  in  several

ways  including  linear  analysis  and  Lyapunov  analysis  [Strogatz  1994].  Here,  we  apply  linear  stability
analysis to understand the nature of the fixed points of these algorithms. Further, we perform numerical

simulations  of  the  original  stochastic  algorithms  and  the  approximate  dynamics  derived  above  to

provide experimental insight into the behavior of the two algorithms.
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Results
The system of equations resulting from Algorithm 1 is richer than that resulting from Algorithm 2. This
is due to the fact that equation (8) is 2nd order in q j

i , while equation (7) is 3rd order in q j
i . We find that

for general sum games with arbitrary payoff matrices, algorithm 1 has 10 fixed points, while algorithm 2
has  5  fixed  points,  demonstrating  the  difference  in  complexity.  Most  of  these  equilibria  correspond  to

trivial solutions where one or more of the value functions is zero. In most noncooperative games,  these

are  undesirable  equilibria  with  sub-optimal  payoff.  The  non-trivial  fixed  points  of  the  dynamics  for

algorithm 1 correspond to the 2 symmetric matching equilibrium, where

(9)
p1

i
ÅÅÅÅÅÅÅÅÅ
p2

i =
Xr1

i \
ÅÅÅÅÅÅÅÅÅÅÅÅÅXr2

i \
In the case of symmetric payoff  matrices for the two players,  these two fixed points will collapse to one
with equal  values for  both value functions (as  in the case of matching  pennies  and other  constant  sum

games). The single non-trivial fixed point of algorithm 2 corresponds to the Nash equilibrium of
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for player 1 and vice versa for player 2.
We will first focus on the stability analysis  about the more interesting non-trivial  fixed points and then

discuss the stability about the trivial fixed points. Unfortunately, linear stability analysis about the Nash

equilibrium with algorithm 2 shows marginal  stability.  This  is a border line  case where  the real  part of

the  eigenvalues  of  the  Jacobian  matrix,  evaluated  at  the  fixed  point,  are  all  zero.  In  this  case,  linear
analysis  is  inconclusive  and nonlinear  methods  are  needed.  Numerical  simulations  for  a  constant  sum

game  (figure  (2))  of  equations  (8)  (red  curve)  and (3)  (blue  curve)  show  that  system  tends  to  diverge

from fixed point even for trajectories starting close to the fixed points. This  suggests that the nonlinear

terms in algorithm 2 lead to instability of the Nash fixed point.
Algorithm  2  proved  to  be  significantly  more  difficult  to  analyze  analytically  for  the  general  case  of

arbitrary payoff matrices. We simplified the problem by choosing a set of payoff matrices corresponding

to a constant  sum game and computing the stability  of the matching  equilibrium for that  game. In this

situation,  we  found  that  the  single  resulting  matching  equilibrium  was  stable.  Additionally,  we  found
that  all  the  other  equilibria  were  unstable  in  atleast  one  direction.  This  suggests  that  the  matching

equilibrium  might  be  globally  stable,  although  we  haven't  rigorously  proved  it  as  such.  Numerical

simulations  (figure  (1))   of  equations  (7)  (red  curve)  and  (2)  (blue  curve)  also  demonstrate  robust

convergence to the matching equilibrium, even for trajectories starting far away from this fixed point.
In the phase space trajectories  shown in both sets of numerical simulations  below, the trajectory  starts

location indicated  by the green star  and ends  at the location shown  by the blue star.  Since  the simula-
tions were for constant sum games, the single matching equilibrium is the same as the Nash equilibrium

and  lies  at  p=0.5  for  both  players.  We  find  that  the  deterministic  mean-field  and  the  stochastic  algo-
rithm  generally  converge  to  the  same  point  at  the  matching  equilibrium  for  algorithm  1,  while  the

convergence  of algorithm  2 is  different for  the two cases  and diverges from the Nash equilibrium  even

after reaching it.
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Discussion
Using mean-field and continuous time approximations, we have shown that the matching equilibrium of

algorithm 1 in self-play is locally  stable and have suggested  its global  stability  for constant  sum games.

Similarly,  we  have  found  suggest  the  instability  of  the  Nash  equilibrium  of  algorithm  2.  However,  we

must  bear  the  following  in  mind  while  generalizing  the  results  above  to  the  original  stochastic  algo-
rithm.  The  mean-field  approximation  may  not  be  appropriate  if  the  bulk  of  the  actual  distribution  of

trajectories is away from the mean. In other words, if the mean is different from the mode of the distribu-
tion,  than  the  analysis  is  erroneous.  Additionally,  the  continuous  time  approximation  may  also  not

necessarily  predict  the  convergence  behavior  of  the  actual  system.  However,  results  such  as  those  by
Singh  et  al  [Singh,  Kearns,  Mansour  2000]  suggest  that  the  continuous  time  approximation  may  hold

for  systems  such  as  this.  Additionally,  our  numerical  simulations  corroborate  our  analytic  findings,

suggesting the validity of the overall approach.

A potentially controversial  assumption made in our study that player use stochastic strategies.  It is still
an open question as to whether humans and animals are capable of truly random behavior. Any amount

of  determinism  employed  by the player  has  the potential  of  nullifying  all  the conclusions  in  this  work.

The  framework  used  by  us  is  inappropriate  for  the  analysis  of  deterministic  strategies  which  may  be

more complex involving many internal player states.
But  caveats  aside,  an  interesting  result  is  that  for  this  class  of  algorithms,  the  Nash  equilibrium  is

unstable,  while  the  matching  equilibrium  is  stable.  This  result  is  congruous  with  many  earlier  studies

that have pitted people and animals against  computers and have found probability  matching  or tit-for-

tat behavior.
In  the  algorithms  analyzed  above,  we  have  only  considered  the  two  extreme  cases  where  the  value

function  decays  only  when  the  corresponding  action  is  taken  and  where  the  value  function  decays  on

every  play.  We  may,  instead,  consider  a  continuum  of  algorithms  in  which  the  value  function  has  a

separate decay rate (f2 ) ranging from 0 to f1 .

(11)Dq j
i HtL = - d j,,ai HtL Hf1 qj

i @tD - rj
i HtLL - H1 - d j,,ai HtL L f2 qj

i @tD
This  more  general  equation  has  stable  matching  behavior  for  f2 = 0  and  unstable  Nash  behavior  for

f2 = f1 .  Preliminary  simulations  with  this  algorithm  suggest  that  for  intermediate  settings,  the  fixed

point is progressively more stable with a location between the Nash and the matching equilibria.
To conclude, we present the analysis of a general reinforcement learning based model for learning agent

in general-sum  games.  We  find evidence  in  support  of previous  experiments  where  matching  behavior

was seen.
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