Functional Analysis Review

Lorenzo Rosasco –slides courtesy of Andre Wibisono

9.520: Statistical Learning Theory and Applications

September 9, 2013

Image: A matrix and a matrix

Outline

Vector Spaces Hilbert Spaces Functionals and Operators (Matrices) Linear Operators

3 Functionals and Operators (Matrices)

(4) (3) (4) (4) (4)

Vector Space

 $\bullet\ A$ vector space is a set V with binary operations

$$+: V \times V \to V \quad \mathrm{and} \quad \cdot : \mathbb{R} \times V \to V$$

such that for all $a, b \in \mathbb{R}$ and $v, w, x \in V$:

< ロト (同) (三) (三)

Vector Space

 \bullet A vector space is a set V with binary operations

$$+: V \times V \to V \quad \text{and} \quad \cdot : \mathbb{R} \times V \to V$$

such that for all $a, b \in \mathbb{R}$ and $v, w, x \in V$:

• Example: \mathbb{R}^n , space of polynomials, space of functions.

Inner Product

• An inner product is a function $\langle \cdot, \cdot \rangle \colon V \times V \to \mathbb{R}$ such that for all $a, b \in \mathbb{R}$ and $v, w, x \in V$:

Inner Product

• An inner product is a function $\langle \cdot, \cdot \rangle \colon V \times V \to \mathbb{R}$ such that for all $a, b \in \mathbb{R}$ and $v, w, x \in V$:

2
$$\langle av + bw, x \rangle = a \langle v, x \rangle + b \langle w, x \rangle$$

$$\ \, {\color{black} {\color{black} 0} } \ \, \langle \nu,\nu\rangle \geqslant 0 \ \, {\rm and} \ \, \langle \nu,\nu\rangle = 0 \ \, {\rm if} \ \, {\rm and} \ \, {\rm only} \ \, {\rm if} \ \, \nu=0.$$

Inner Product

• An inner product is a function $\langle \cdot, \cdot \rangle \colon V \times V \to \mathbb{R}$ such that for all $a, b \in \mathbb{R}$ and $v, w, x \in V$:

$$(a\nu + bw, x) = a \langle v, x \rangle + b \langle w, x \rangle$$

- $\begin{tabular}{ll} \hline & \langle \nu,\nu\rangle \geqslant 0 \mbox{ and } \langle \nu,\nu\rangle = 0 \mbox{ if and only if }\nu = 0. \end{tabular} \end{tabular}$
- $v, w \in V$ are orthogonal if $\langle v, w \rangle = 0$.

Inner Product

• An inner product is a function $\langle \cdot, \cdot \rangle \colon V \times V \to \mathbb{R}$ such that for all $a, b \in \mathbb{R}$ and $v, w, x \in V$:

$$(av + bw, x) = a \langle v, x \rangle + b \langle w, x \rangle$$

- $\ \, {\color{black} {\color{black} 0}} \ \, \langle \nu,\nu\rangle \geqslant 0 \ \, {\rm and} \ \, \langle \nu,\nu\rangle = 0 \ \, {\rm if} \ \, {\rm and} \ \, {\rm only} \ \, {\rm if} \ \, \nu=0.$
- $v, w \in V$ are orthogonal if $\langle v, w \rangle = 0$.
- Given $W \subseteq V$, we have $V = W \oplus W^{\perp}$, where $W^{\perp} = \{ v \in V \mid \langle v, w \rangle = 0 \text{ for all } w \in W \}.$

Inner Product

• An inner product is a function $\langle \cdot, \cdot \rangle \colon V \times V \to \mathbb{R}$ such that for all $a, b \in \mathbb{R}$ and $v, w, x \in V$:

2
$$\langle av + bw, x \rangle = a \langle v, x \rangle + b \langle w, x \rangle$$

$$\ \, {\color{black} { \ 0 } } \ \, \langle \nu,\nu\rangle \geqslant 0 \ \, {\rm and} \ \, \langle \nu,\nu\rangle = 0 \ \, {\rm if \ and \ only \ if \ \nu = 0. }$$

- $v, w \in V$ are orthogonal if $\langle v, w \rangle = 0$.
- Given $W \subseteq V$, we have $V = W \oplus W^{\perp}$, where $W^{\perp} = \{ v \in V \mid \langle v, w \rangle = 0 \text{ for all } w \in W \}.$
- Cauchy-Schwarz inequality: $\langle v, w \rangle \leq \langle v, v \rangle^{1/2} \langle w, w \rangle^{1/2}$.

・ロト ・ 一下 ・ ト ・ 日 ト

• Can define norm from inner product: $\|v\| = \langle v, v \rangle^{1/2}$.

E

Norm

• A norm is a function $\|\cdot\|: V \to \mathbb{R}$ such that for all $a \in \mathbb{R}$ and $v, w \in V$:

$$\|v\| \ge 0, \text{ and } \|v\| = 0 \text{ if and only if } v = 0$$

2
$$||av|| = |a| ||v||$$

$$\| \mathbf{v} + \mathbf{w} \| \leqslant \| \mathbf{v} \| + \| \mathbf{w} \|$$

• Can define norm from inner product: $\|v\| = \langle v, v \rangle^{1/2}$.

Metric

• Can define metric from norm: $\mathbf{d}(\mathbf{v}, \mathbf{w}) = \|\mathbf{v} - \mathbf{w}\|$.

<ロト <問ト < 回ト < 回ト

E

Metric

- A metric is a function $d: V \times V \to \mathbb{R}$ such that for all $v, w, x \in V$:
 - **(**) $d(v, w) \ge 0$, and d(v, w) = 0 if and only if v = w

$$d(v,w) = d(w,v)$$

- $d(v,w) \leqslant d(v,x) + d(x,w)$
- Can define metric from norm: $\mathbf{d}(\mathbf{v}, \mathbf{w}) = \|\mathbf{v} \mathbf{w}\|$.

・ロト ・四ト ・ヨト ・ヨト

Basis

• $B = \{v_1, \dots, v_n\}$ is a **basis** of V if every $v \in V$ can be uniquely decomposed as

$$\mathbf{v} = \mathbf{a}_1 \mathbf{v}_1 + \dots + \mathbf{a}_n \mathbf{v}_n$$

for some $a_1, \ldots, a_n \in \mathbb{R}$.

(日) (종) (종) (종)

Basis

• $B = \{v_1, \dots, v_n\}$ is a **basis** of V if every $v \in V$ can be uniquely decomposed as

$$v = a_1v_1 + \cdots + a_nv_n$$

for some $a_1, \ldots, a_n \in \mathbb{R}$.

• An orthonormal basis is a basis that is orthogonal $(\langle v_i, v_j \rangle = 0 \text{ for } i \neq j)$ and normalized $(||v_i|| = 1)$.

2 Hilbert Spaces

3 Functionals and Operators (Matrices)

L. Rosasco Functional Analysis Review

<ロト <問ト < 回ト < 回ト

Hilbert Space, overview

• Goal: to understand Hilbert spaces (complete inner product spaces) and to make sense of the expression

$$f=\sum_{i=1}^{\infty}\langle f,\varphi_i\rangle\varphi_i,\ f\in\mathcal{H}$$

- Need to talk about:
 - Cauchy sequence
 - 2 Completeness
 - Output Density
 - Separability

Cauchy Sequence

• Recall: $\lim_{n\to\infty} x_n = x$ if for every $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that $||x - x_n|| < \varepsilon$ whenever $n \ge \mathbb{N}$.

- - E - F

Cauchy Sequence

- Recall: $\lim_{n\to\infty} x_n = x$ if for every $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that $||x x_n|| < \varepsilon$ whenever $n \ge \mathbb{N}$.
- $(x_n)_{n \in \mathbb{N}}$ is a **Cauchy sequence** if for every $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that $||x_m x_n|| < \varepsilon$ whenever $m, n \ge N$.

Cauchy Sequence

- Recall: $\lim_{n\to\infty} x_n = x$ if for every $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that $||x x_n|| < \varepsilon$ whenever $n \ge \mathbb{N}$.
- $(x_n)_{n \in \mathbb{N}}$ is a **Cauchy sequence** if for every $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that $||x_m x_n|| < \varepsilon$ whenever $m, n \ge N$.
- Every convergent sequence is a Cauchy sequence (why?)

Completeness

• A normed vector space V is **complete** if every Cauchy sequence converges.

< 一型

Completeness

- A normed vector space V is **complete** if every Cauchy sequence converges.
- Examples:
 - **1** \mathbb{Q} is not complete.
 - **2** \mathbb{R} is complete (axiom).
 - \bigcirc \mathbb{R}^n is complete.
 - Every finite dimensional normed vector space (over ℝ) is complete.

• □ ▶ • 4 🖓 ▶ • 3 ≥ ▶

-

• A Hilbert space is a complete inner product space.

< 一型

- A Hilbert space is a complete inner product space.
- Examples:
 - $\bigcirc \mathbb{R}^n$

2 Every finite dimensional inner product space.

3
$$\ell_2 = \{(a_n)_{n=1}^{\infty} \mid a_n \in \mathbb{R}, \sum_{n=1}^{\infty} a_n^2 < \infty\}$$

($L_2([0,1]) = \{f: [0,1] \to \mathbb{R} \mid \int_0^1 f(x)^2 \, dx < \infty\}$

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Density

• Y is **dense** in X if $\overline{Y} = X$.

<ロト <問ト < 回ト < 回ト

Density

- Y is **dense** in X if $\overline{Y} = X$.
- Examples:

 - **2** \mathbb{Q}^n is dense in \mathbb{R}^n .
 - Weierstrass approximation theorem: polynomials are dense in continuous functions (with the supremum norm, on compact domains).

• X is **separable** if it has a countable dense subset.

<ロト <問ト < 回ト < 回ト

- X is **separable** if it has a countable dense subset.
- Examples:
 - \mathbb{R} is separable.
 - **2** \mathbb{R}^n is separable.
 - \bullet ℓ_2 , $L_2([0,1])$ are separable.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Orthonormal Basis

- A Hilbert space has a countable orthonormal basis if and only if it is separable.
- Can write:

$$f=\sum_{\mathfrak{i}=1}^{\infty}\langle f,\varphi_{\mathfrak{i}}\rangle\varphi_{\mathfrak{i}} \ \, {\rm for \ all} \ f\in \mathfrak{H}.$$

Orthonormal Basis

- A Hilbert space has a countable orthonormal basis if and only if it is separable.
- Can write:

$$f=\sum_{i=1}^{\infty}\langle f,\varphi_i\rangle\varphi_i \ \, {\rm for \ all} \ f\in {\mathcal H}.$$

- Examples:
 - **(**) Basis of ℓ_2 is $(1, 0, \dots,), (0, 1, 0, \dots), (0, 0, 1, 0, \dots), \dots$
 - **2** Basis of $L_2([0,1])$ is $1, 2 \sin 2\pi nx, 2 \cos 2\pi nx$ for $n \in \mathbb{N}$

3 Functionals and Operators (Matrices)

Next we are going to review basic properties of maps on a Hilbert space.

- functionals: $\Psi : \mathcal{H} \to \mathbb{R}$
- linear operators $A : \mathcal{H} \to \mathcal{H}$, such that A(af + bg) = aAf + bAg, with $a, b \in \mathbb{R}$ and $f, g \in \mathcal{H}$.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Representation of Continuous Functionals

Let \mathcal{H} be a Hilbert space and $g \in \mathcal{H}$, then

$$\Psi_g(f) = \left< f, g \right>, \qquad f \in \mathcal{H}$$

is a continuous linear functional.

Riesz representation theorem

The theorem states that every continuous linear functional Ψ can be written uniquely in the form,

 $\Psi(f)=\langle f,g\rangle$

for some appropriate element $g \in \mathcal{H}$.

Matrix

• Every linear operator L: $\mathbb{R}^m \to \mathbb{R}^n$ can be represented by an $m \times n$ matrix A.

< ロト (同) (三) (三)

Matrix

- Every linear operator L: $\mathbb{R}^m \to \mathbb{R}^n$ can be represented by an $m \times n$ matrix A.
- If $A \in \mathbb{R}^{m \times n}$, the transpose of A is $A^{\top} \in \mathbb{R}^{n \times m}$ satisfying $\langle Ax, y \rangle_{\mathbb{R}^m} = (Ax)^{\top}y = x^{\top}A^{\top}y = \langle x, A^{\top}y \rangle_{\mathbb{R}^n}$ for every $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^m$.

Matrix

- Every linear operator L: $\mathbb{R}^m \to \mathbb{R}^n$ can be represented by an $m \times n$ matrix A.
- If $A \in \mathbb{R}^{m \times n}$, the transpose of A is $A^{\top} \in \mathbb{R}^{n \times m}$ satisfying $\langle Ax, y \rangle_{\mathbb{R}^m} = (Ax)^{\top}y = x^{\top}A^{\top}y = \langle x, A^{\top}y \rangle_{\mathbb{R}^n}$ for every $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^m$.
- A is symmetric if $A^{\top} = A$.

Eigenvalues and Eigenvectors

• Let $A \in \mathbb{R}^{n \times n}$. A nonzero vector $v \in \mathbb{R}^n$ is an eigenvector of A with corresponding eigenvalue $\lambda \in \mathbb{R}$ if $Av = \lambda v$.

Eigenvalues and Eigenvectors

- Let $A \in \mathbb{R}^{n \times n}$. A nonzero vector $v \in \mathbb{R}^n$ is an eigenvector of A with corresponding eigenvalue $\lambda \in \mathbb{R}$ if $Av = \lambda v$.
- Symmetric matrices have real eigenvalues.

Eigenvalues and Eigenvectors

- Let $A \in \mathbb{R}^{n \times n}$. A nonzero vector $v \in \mathbb{R}^n$ is an eigenvector of A with corresponding eigenvalue $\lambda \in \mathbb{R}$ if $Av = \lambda v$.
- Symmetric matrices have real eigenvalues.
- Spectral Theorem: Let A be a symmetric $n \times n$ matrix. Then there is an orthonormal basis of \mathbb{R}^n consisting of the eigenvectors of A.

・ロト ・ 同ト ・ ヨト ・ ヨト

Eigenvalues and Eigenvectors

- Let $A \in \mathbb{R}^{n \times n}$. A nonzero vector $v \in \mathbb{R}^n$ is an eigenvector of A with corresponding eigenvalue $\lambda \in \mathbb{R}$ if $Av = \lambda v$.
- Symmetric matrices have real eigenvalues.
- Spectral Theorem: Let A be a symmetric $n \times n$ matrix. Then there is an orthonormal basis of \mathbb{R}^n consisting of the eigenvectors of A.
- Eigendecomposition: $A = V \Lambda V^{\top}$, or equivalently,

$$A = \sum_{i=1}^n \lambda_i \nu_i \nu_i^\top.$$

(日) (四) (日) (日)

Singular Value Decomposition

• Every $A \in \mathbb{R}^{m \times n}$ can be written as

$$A = U\Sigma V^{\top},$$

where $U \in \mathbb{R}^{m \times m}$ is orthogonal, $\Sigma \in \mathbb{R}^{m \times n}$ is diagonal, and $V \in \mathbb{R}^{n \times n}$ is orthogonal.

Singular Value Decomposition

• Every $A \in \mathbb{R}^{m \times n}$ can be written as

$$A = U\Sigma V^{\top},$$

where $U \in \mathbb{R}^{m \times m}$ is orthogonal, $\Sigma \in \mathbb{R}^{m \times n}$ is diagonal, and $V \in \mathbb{R}^{n \times n}$ is orthogonal.

• Singular system:

$$Av_{i} = \sigma_{i}u_{i} \qquad AA^{\top}u_{i} = \sigma_{i}^{2}u_{i}$$
$$A^{\top}u_{i} = \sigma_{i}v_{i} \qquad A^{\top}Av_{i} = \sigma_{i}^{2}v_{i}$$

(日) (四) (日) (日)

Matrix Norm

• The spectral norm of $A \in \mathbb{R}^{m \times n}$ is

$$\|A\|_{\operatorname{spec}} = \sigma_{\max}(A) = \sqrt{\lambda_{\max}(AA^{\top})} = \sqrt{\lambda_{\max}(A^{\top}A)}.$$

Matrix Norm

• The spectral norm of $A \in \mathbb{R}^{m \times n}$ is

$$\|A\|_{\operatorname{spec}} = \sigma_{\max}(A) = \sqrt{\lambda_{\max}(AA^{\top})} = \sqrt{\lambda_{\max}(A^{\top}A)}.$$

 \bullet The Frobenius norm of $A \in \mathbb{R}^{m \times n}$ is

$$\|A\|_F = \sqrt{\sum_{\mathfrak{i}=1}^m \sum_{\mathfrak{j}=1}^n \mathfrak{a}_{\mathfrak{i}\mathfrak{j}}^2} = \sqrt{\sum_{\mathfrak{i}=1}^{\min\{m,n\}} \sigma_\mathfrak{i}^2}.$$

(日) (四) (日) (日)

Positive Definite Matrix

A real symmetric matrix $A \in \mathbb{R}^{m \times m}$ is positive definite if

 $x^t A x > 0, \quad \forall x \in \mathbb{R}^m.$

A positive definite matrix has positive eigenvalues.

Note: for positive semi-definite matrices > is replaced by \ge .

・ロト ・ 同ト ・ ヨト ・ ヨト

1 Vector Spaces

2 Hilbert Spaces

3 Functionals and Operators (Matrices)

4 Linear Operators

Linear Operator

• An operator L: $\mathcal{H}_1 \to \mathcal{H}_2$ is linear if it preserves the linear structure.

Linear Operator

- An operator L: $\mathcal{H}_1 \to \mathcal{H}_2$ is linear if it preserves the linear structure.
- A linear operator L: $\mathcal{H}_1 \to \mathcal{H}_2$ is bounded if there exists C>0 such that

 $\|Lf\|_{\mathcal{H}_2}\leqslant C\|f\|_{\mathcal{H}_1} \ \, {\rm for \ all} \ f\in \mathcal{H}_1.$

< ロト (四) (三) (三)

Linear Operator

- An operator L: $\mathcal{H}_1 \to \mathcal{H}_2$ is linear if it preserves the linear structure.
- A linear operator L: $\mathcal{H}_1 \to \mathcal{H}_2$ is bounded if there exists C>0 such that

 $\|Lf\|_{\mathcal{H}_2}\leqslant C\|f\|_{\mathcal{H}_1} \ \, {\rm for \ all} \ f\in \mathcal{H}_1.$

• A linear operator is continuous if and only if it is bounded.

・ロト ・四ト ・ヨト ・ヨト

Adjoint and Compactness

• The adjoint of a bounded linear operator L: $\mathcal{H}_1 \to \mathcal{H}_2$ is a bounded linear operator $L^* \colon \mathcal{H}_2 \to \mathcal{H}_1$ satisfying

$$\langle Lf,g\rangle_{\mathcal{H}_2}=\langle f,L^*g\rangle_{\mathcal{H}_1} \ \, \mathrm{for \ all} \ f\in\mathcal{H}_1,g\in\mathcal{H}_2.$$

• L is self-adjoint if $L^* = L$. Self-adjoint operators have real eigenvalues.

Adjoint and Compactness

• The adjoint of a bounded linear operator L: $\mathcal{H}_1 \to \mathcal{H}_2$ is a bounded linear operator $L^* \colon \mathcal{H}_2 \to \mathcal{H}_1$ satisfying

$$\langle Lf,g\rangle_{\mathcal{H}_2}=\langle f,L^*g\rangle_{\mathcal{H}_1} \ \, \mathrm{for \ all} \ f\in\mathcal{H}_1,g\in\mathcal{H}_2.$$

- L is self-adjoint if $L^* = L$. Self-adjoint operators have real eigenvalues.
- A bounded linear operator L: ℋ₁ → ℋ₂ is compact if the image of the unit ball in ℋ₁ has compact closure in ℋ₂.

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Spectral Theorem for Compact Self-Adjoint Operator

• Let $L: \mathcal{H} \to \mathcal{H}$ be a compact self-adjoint operator. Then there exists an orthonormal basis of \mathcal{H} consisting of the eigenfunctions of L,

$$L\varphi_i = \lambda_i \varphi_i$$

and the only possible limit point of λ_i as $i \to \infty$ is 0.

Spectral Theorem for Compact Self-Adjoint Operator

• Let $L: \mathcal{H} \to \mathcal{H}$ be a compact self-adjoint operator. Then there exists an orthonormal basis of \mathcal{H} consisting of the eigenfunctions of L,

$$L\varphi_i = \lambda_i \varphi_i$$

and the only possible limit point of λ_i as $i \to \infty$ is 0.

• Eigendecomposition:

$$L = \sum_{i=1}^{\infty} \lambda_i \langle \varphi_i, \cdot \rangle \varphi_i.$$