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Vector Space

A vector space is a set V with binary operations

+: V × V → V and · : R× V → V

such that for all a,b ∈ R and v,w, x ∈ V:

1 v+w = w+ v
2 (v+w) + x = v+ (w+ x)
3 There exists 0 ∈ V such that v+ 0 = v for all v ∈ V
4 For every v ∈ V there exists −v ∈ V such that v+ (−v) = 0
5 a(bv) = (ab)v
6 1v = v
7 (a+ b)v = av+ bv
8 a(v+w) = av+ aw

Example: Rn, space of polynomials, space of functions.
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Inner Product

An inner product is a function 〈·, ·〉 : V × V → R such
that for all a,b ∈ R and v,w, x ∈ V:

1 〈v,w〉 = 〈w, v〉
2 〈av+ bw, x〉 = a〈v, x〉+ b〈w, x〉
3 〈v, v〉 > 0 and 〈v, v〉 = 0 if and only if v = 0.

v,w ∈ V are orthogonal if 〈v,w〉 = 0.

Given W ⊆ V, we have V =W ⊕W⊥, where
W⊥ = { v ∈ V | 〈v,w〉 = 0 for all w ∈W }.

Cauchy-Schwarz inequality: 〈v,w〉 6 〈v, v〉1/2〈w,w〉1/2.
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Norm

A norm is a function ‖ · ‖ : V → R such that for all a ∈ R
and v,w ∈ V:

1 ‖v‖ > 0, and ‖v‖ = 0 if and only if v = 0

2 ‖av‖ = |a| ‖v‖
3 ‖v+w‖ 6 ‖v‖+ ‖w‖

Can define norm from inner product: ‖v‖ = 〈v, v〉1/2.
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Metric

A metric is a function d : V × V → R such that for all
v,w, x ∈ V:

1 d(v,w) > 0, and d(v,w) = 0 if and only if v = w

2 d(v,w) = d(w, v)

3 d(v,w) 6 d(v, x) + d(x,w)

Can define metric from norm: d(v,w) = ‖v−w‖.
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Basis

B = {v1, . . . , vn} is a basis of V if every v ∈ V can be
uniquely decomposed as

v = a1v1 + · · ·+ anvn
for some a1, . . . ,an ∈ R.

An orthonormal basis is a basis that is orthogonal
(〈vi, vj〉 = 0 for i 6= j) and normalized (‖vi‖ = 1).
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Hilbert Space, overview

Goal: to understand Hilbert spaces (complete inner
product spaces) and to make sense of the expression

f =

∞∑
i=1

〈f,φi〉φi, f ∈ H

Need to talk about:

1 Cauchy sequence

2 Completeness

3 Density

4 Separability
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Cauchy Sequence

Recall: limn→∞ xn = x if for every ε > 0 there exists
N ∈ N such that ‖x− xn‖ < ε whenever n > N.

(xn)n∈N is a Cauchy sequence if for every ε > 0 there
exists N ∈ N such that ‖xm − xn‖ < ε whenever m,n > N.

Every convergent sequence is a Cauchy sequence (why?)
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Completeness

A normed vector space V is complete if every Cauchy
sequence converges.

Examples:

1 Q is not complete.

2 R is complete (axiom).

3 Rn is complete.

4 Every finite dimensional normed vector space (over R) is
complete.
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Hilbert Space

A Hilbert space is a complete inner product space.

Examples:

1 Rn

2 Every finite dimensional inner product space.

3 `2 = {(an)
∞
n=1 | an ∈ R,

∑∞
n=1 a

2
n <∞}

4 L2([0, 1]) = {f : [0, 1]→ R |
∫1
0 f(x)

2 dx <∞}
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Density

Y is dense in X if Y = X.

Examples:

1 Q is dense in R.

2 Qn is dense in Rn.

3 Weierstrass approximation theorem: polynomials are dense
in continuous functions (with the supremum norm, on
compact domains).
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Separability

X is separable if it has a countable dense subset.

Examples:

1 R is separable.

2 Rn is separable.

3 `2, L2([0, 1]) are separable.
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Orthonormal Basis

A Hilbert space has a countable orthonormal basis if and
only if it is separable.

Can write:

f =

∞∑
i=1

〈f,φi〉φi for all f ∈ H.

Examples:

1 Basis of `2 is (1, 0, . . . , ), (0, 1, 0, . . . ), (0, 0, 1, 0, . . . ), . . .

2 Basis of L2([0, 1]) is 1, 2 sin 2πnx, 2 cos 2πnx for n ∈ N
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Maps

Next we are going to review basic properties of maps on a
Hilbert space.

functionals: Ψ : H→ R
linear operators A : H→ H, such that
A(af+ bg) = aAf+ bAg, with a,b ∈ R and f,g ∈ H.
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Representation of Continuous Functionals

Let H be a Hilbert space and g ∈ H, then

Ψg(f) = 〈f,g〉 , f ∈ H

is a continuous linear functional.

Riesz representation theorem

The theorem states that every continuous linear functional Ψ
can be written uniquely in the form,

Ψ(f) = 〈f,g〉

for some appropriate element g ∈ H.
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Matrix

Every linear operator L : Rm → Rn can be represented by
an m× n matrix A.

If A ∈ Rm×n, the transpose of A is A> ∈ Rn×m satisfying

〈Ax,y〉Rm = (Ax)>y = x>A>y = 〈x,A>y〉Rn

for every x ∈ Rn and y ∈ Rm.

A is symmetric if A> = A.
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Eigenvalues and Eigenvectors

Let A ∈ Rn×n. A nonzero vector v ∈ Rn is an eigenvector
of A with corresponding eigenvalue λ ∈ R if Av = λv.

Symmetric matrices have real eigenvalues.

Spectral Theorem: Let A be a symmetric n× n matrix.
Then there is an orthonormal basis of Rn consisting of the
eigenvectors of A.

Eigendecomposition: A = VΛV>, or equivalently,

A =

n∑
i=1

λiviv
>
i .
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Singular Value Decomposition

Every A ∈ Rm×n can be written as

A = UΣV>,

where U ∈ Rm×m is orthogonal, Σ ∈ Rm×n is diagonal,
and V ∈ Rn×n is orthogonal.

Singular system:

Avi = σiui AA>ui = σ
2
iui

A>ui = σivi A>Avi = σ
2
ivi
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Matrix Norm

The spectral norm of A ∈ Rm×n is

‖A‖spec = σmax(A) =
√
λmax(AA>) =

√
λmax(A>A).

The Frobenius norm of A ∈ Rm×n is

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

a2ij =

√√√√min{m,n}∑
i=1

σ2i .
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Positive Definite Matrix

A real symmetric matrix A ∈ Rm×m is positive definite if

xtAx > 0, ∀x ∈ Rm.

A positive definite matrix has positive eigenvalues.

Note: for positive semi-definite matrices > is replaced by >.
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Linear Operator

An operator L : H1 → H2 is linear if it preserves the linear
structure.

A linear operator L : H1 → H2 is bounded if there exists
C > 0 such that

‖Lf‖H2
6 C‖f‖H1

for all f ∈ H1.

A linear operator is continuous if and only if it is bounded.
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Adjoint and Compactness

The adjoint of a bounded linear operator L : H1 → H2 is a
bounded linear operator L∗ : H2 → H1 satisfying

〈Lf,g〉H2
= 〈f,L∗g〉H1

for all f ∈ H1,g ∈ H2.

L is self-adjoint if L∗ = L. Self-adjoint operators have real
eigenvalues.

A bounded linear operator L : H1 → H2 is compact if the
image of the unit ball in H1 has compact closure in H2.
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Spectral Theorem for Compact Self-Adjoint Operator

Let L : H→ H be a compact self-adjoint operator. Then
there exists an orthonormal basis of H consisting of the
eigenfunctions of L,

Lφi = λiφi

and the only possible limit point of λi as i→∞ is 0.

Eigendecomposition:

L =

∞∑
i=1

λi〈φi, ·〉φi.
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