
Online Learning

Lorenzo Rosasco

MIT, 9.520

L. Rosasco Online Learning

About this class

Goal To introduce theory and algorithms for online
learning.

L. Rosasco Online Learning

Plan

Different views on online learning
From batch to online least squares
Other loss functions
Theory

L. Rosasco Online Learning

(Batch) Learning Algorithms

A learning algorithm A is a map from the data space into the
hypothesis space and

fS = A(S),

where S = Sn = (x0, y0). . . . (xn−1, yn−1).

We typically assume that:
A is deterministic,
A does not depend on the ordering of the points in the
training set.

notation: note the weird numbering of the training set!

L. Rosasco Online Learning

Online Learning Algorithms

The pure online learning approach is:

let f1 = init
for n = 1, . . .
fn+1 = A(fn, (xn, yn))

The algorithm works sequentially and has a recursive
definition.

L. Rosasco Online Learning

Online Learning Algorithms (cont.)

A related approach (similar to transductive learning) is:

let f1 = init
for n = 1, . . .
fn+1 = A(fn,Sn, (xn, yn))

Also in this case the algorithm works sequentially and has
a recursive definition, but it requires storing the past data
Sn.

L. Rosasco Online Learning

Why Online Learning?

Different motivations/perspectives that often corresponds to
different theoretical framework.

Biologically plausibility.
Stochastic approximation.
Incremental Optimization.
Non iid data, game theoretic view.

L. Rosasco Online Learning

Online Learning and Stochastic Approximation

Our goal is to minimize the expected risk

I[f] = E(x ,y) [V (f (x), y)] =

∫
V (f (x), y)dµ(x , y)

over the hypothesis space H, but the data distribution is not
known.

The idea is to use the samples to build an approximate solution
and to update such a solution as we get more data.

L. Rosasco Online Learning

Online Learning and Stochastic Approximation

Our goal is to minimize the expected risk

I[f] = E(x ,y) [V (f (x), y)] =

∫
V (f (x), y)dµ(x , y)

over the hypothesis space H, but the data distribution is not
known.

The idea is to use the samples to build an approximate solution
and to update such a solution as we get more data.

L. Rosasco Online Learning

Online Learning and Stochastic Approximation (cont.)

More precisely if
we are given samples (xi , yi)i in a sequential fashion
at the n − th step we have an approximation G(f , (xn, yn))
of the gradient of I[f]

then we can define a recursion by

let f0 = init
for n = 0, . . .
fn+1 = fn + γn(G(fn, (xn, yn))

L. Rosasco Online Learning

Online Learning and Stochastic Approximation (cont.)

More precisely if
we are given samples (xi , yi)i in a sequential fashion
at the n − th step we have an approximation G(f , (xn, yn))
of the gradient of I[f]

then we can define a recursion by

let f0 = init
for n = 0, . . .
fn+1 = fn + γn(G(fn, (xn, yn))

L. Rosasco Online Learning

Incremental Optimization

Here our goal is to solve empirical risk minimization

IS[f],

or regularized empirical risk minimization

IλS[f] = IS[f] + λ‖f‖2

over the hypothesis space H, when the number of points is so
big (say n = 108 − 109) that standard solvers would not be
feasible.

Memory is the main constraint here.

L. Rosasco Online Learning

Incremental Optimization (cont.)

In this case we can consider

let f0 = init
for t = 0, . . .
ft+1 = ft + γt (G(ft , (xnt , ynt))

where here G(ft , (xnt , ynt)) is a pointwise estimate of the
gradient of IS or IλS.

Epochs
Note that in this case the number of iteration is decoupled to
the index of training set points and we can look at the data
more than once, that is consider different epochs.

L. Rosasco Online Learning

Non i.i.d. data, game theoretic view

If the data are not i.i.d. we can consider a setting when the data
is a finite sequence that we will be disclosed to us in a
sequential (possibly adversarial) fashion.

Then we can see learning as a two players game where
at each step nature chooses a samples (xi , yi)

at each step a learner chooses an estimator fi+1.
The goal of the learner is to perform as well as if he could view
the whole sequence.

L. Rosasco Online Learning

Non i.i.d. data, game theoretic view

If the data are not i.i.d. we can consider a setting when the data
is a finite sequence that we will be disclosed to us in a
sequential (possibly adversarial) fashion.

Then we can see learning as a two players game where
at each step nature chooses a samples (xi , yi)

at each step a learner chooses an estimator fi+1.
The goal of the learner is to perform as well as if he could view
the whole sequence.

L. Rosasco Online Learning

Plan

Different views on online learning
From batch to online least squares
Other loss functions
Theory

L. Rosasco Online Learning

Recalling Least Squares

We start considering a linear kernel so that

IS[f] =
1
n

n−1∑
i=0

(yi − xT
i w) = ‖Y − Xw‖2

Remember that in this case

wn = (X T X)−1X T Y = C−1
n

n−1∑
i=0

xiyi .

(Note that if we regularize we have (Cn + λI)−1 in place of C−1
n .

notation: note the weird numbering of the training set!

L. Rosasco Online Learning

Recalling Least Squares

We start considering a linear kernel so that

IS[f] =
1
n

n−1∑
i=0

(yi − xT
i w) = ‖Y − Xw‖2

Remember that in this case

wn = (X T X)−1X T Y = C−1
n

n−1∑
i=0

xiyi .

(Note that if we regularize we have (Cn + λI)−1 in place of C−1
n .

notation: note the weird numbering of the training set!

L. Rosasco Online Learning

A Recursive Least Squares Algorithm

Then we can consider

wn+1 = wn + C−1
n+1xn[yn − xT

n wn].

Proof

wn = C−1
n (

∑n−1
i=0 xiyi)

wn+1 = C−1
n+1(

∑n−1
i=0 xiyi + xnyn)

wn+1 − wn = C−1
n+1(xnyn) + C−1

n+1(Cn − Cn+1)C−1
n

∑n−1
i=0 xiyi

Cn+1 − Cn = xnxT
n .

L. Rosasco Online Learning

A Recursive Least Squares Algorithm

Then we can consider

wn+1 = wn + C−1
n+1xn[yn − xT

n wn].

Proof

wn = C−1
n (

∑n−1
i=0 xiyi)

wn+1 = C−1
n+1(

∑n−1
i=0 xiyi + xnyn)

wn+1 − wn = C−1
n+1(xnyn) + C−1

n+1(Cn − Cn+1)C−1
n

∑n−1
i=0 xiyi

Cn+1 − Cn = xnxT
n .

L. Rosasco Online Learning

A Recursive Least Squares Algorithm

Then we can consider

wn+1 = wn + C−1
n+1xn[yn − xT

n wn].

Proof

wn = C−1
n (

∑n−1
i=0 xiyi)

wn+1 = C−1
n+1(

∑n−1
i=0 xiyi + xnyn)

wn+1 − wn = C−1
n+1(xnyn) + C−1

n+1(Cn − Cn+1)C−1
n

∑n−1
i=0 xiyi

Cn+1 − Cn = xnxT
n .

L. Rosasco Online Learning

A Recursive Least Squares Algorithm

Then we can consider

wn+1 = wn + C−1
n+1xn[yn − xT

n wn].

Proof

wn = C−1
n (

∑n−1
i=0 xiyi)

wn+1 = C−1
n+1(

∑n−1
i=0 xiyi + xnyn)

wn+1 − wn = C−1
n+1(xnyn) + C−1

n+1(Cn − Cn+1)C−1
n

∑n−1
i=0 xiyi

Cn+1 − Cn = xnxT
n .

L. Rosasco Online Learning

A Recursive Least Squares Algorithm (cont.)

We derived the algorithm

wn+1 = wn + C−1
n+1xn[yn − xT

n wn].

The above approach
is recursive;
requires storing all the data;
requires inverting a matrix (Ci)i at each step.

L. Rosasco Online Learning

A Recursive Least Squares Algorithm (cont.)

The following matrix equality allows to alleviate the
computational burden.

Matrix Inversion Lemma

[A + BCD]−1 = A−1 − A−1B[DA−1B + C−1]−1DA−1

Then

C−1
n+1 = C−1

n − C−1
n xnxT

n C−1
n

1 + xT
n C−1

n xn
.

L. Rosasco Online Learning

A Recursive Least Squares Algorithm (cont.)

The following matrix equality allows to alleviate the
computational burden.

Matrix Inversion Lemma

[A + BCD]−1 = A−1 − A−1B[DA−1B + C−1]−1DA−1

Then

C−1
n+1 = C−1

n − C−1
n xnxT

n C−1
n

1 + xT
n C−1

n xn
.

L. Rosasco Online Learning

A Recursive Least Squares Algorithm (cont.)

Moreover

C−1
n+1xn = C−1

n xn −
C−1

n xnxT
n C−1

n

1 + xT
n C−1

n xn
xn =

C−1
n

1 + xT
n C−1

n xn
xn,

we can derive the algorithm

wn+1 = wn +
C−1

n

1 + xT
n C−1

n xn
xn[yn − xT

n wn].

Since the above iteration is equivalent to empirical risk
minimization (ERM) the conditions ensuring its convergence –
as n→∞ – are the same as those for ERM.

L. Rosasco Online Learning

A Recursive Least Squares Algorithm (cont.)

Moreover

C−1
n+1xn = C−1

n xn −
C−1

n xnxT
n C−1

n

1 + xT
n C−1

n xn
xn =

C−1
n

1 + xT
n C−1

n xn
xn,

we can derive the algorithm

wn+1 = wn +
C−1

n

1 + xT
n C−1

n xn
xn[yn − xT

n wn].

Since the above iteration is equivalent to empirical risk
minimization (ERM) the conditions ensuring its convergence –
as n→∞ – are the same as those for ERM.

L. Rosasco Online Learning

A Recursive Least Squares Algorithm (cont.)

Moreover

C−1
n+1xn = C−1

n xn −
C−1

n xnxT
n C−1

n

1 + xT
n C−1

n xn
xn =

C−1
n

1 + xT
n C−1

n xn
xn,

we can derive the algorithm

wn+1 = wn +
C−1

n

1 + xT
n C−1

n xn
xn[yn − xT

n wn].

Since the above iteration is equivalent to empirical risk
minimization (ERM) the conditions ensuring its convergence –
as n→∞ – are the same as those for ERM.

L. Rosasco Online Learning

A Recursive Least Squares Algorithm (cont.)

The algorithm

wn+1 = wn−1 +
C−1

n

1 + xT
n C−1

n xn
xn[yn − xT

n wn].

is of the form

let f0 = init
for n = 1, . . .
fn+1 = A(fn,Sn, (xn, yn)).

The above approach
is recursive;
requires storing all the data;
updates the inverse just via matrix/vector multiplication.

L. Rosasco Online Learning

A Recursive Least Squares Algorithm (cont.)

The algorithm

wn+1 = wn−1 +
C−1

n

1 + xT
n C−1

n xn
xn[yn − xT

n wn].

is of the form

let f0 = init
for n = 1, . . .
fn+1 = A(fn,Sn, (xn, yn)).

The above approach
is recursive;
requires storing all the data;
updates the inverse just via matrix/vector multiplication.

L. Rosasco Online Learning

Recursive Least Squares (cont.)

How about the memory requirement?
The main constraint comes from the matrix storing/inversion

wn+1 = wn +
C−1

n

1 + xT
n C−1

n xn
xn[yn − xT

n wn].

We can consider

wn+1 = wn + γnxn[yn − xT
n wn].

where γt is a decreasing sequence.

L. Rosasco Online Learning

Recursive Least Squares (cont.)

How about the memory requirement?
The main constraint comes from the matrix storing/inversion

wn+1 = wn +
C−1

n

1 + xT
n C−1

n xn
xn[yn − xT

n wn].

We can consider

wn+1 = wn + γnxn[yn − xT
n wn].

where γt is a decreasing sequence.

L. Rosasco Online Learning

Recursive Least Squares (cont.)

How about the memory requirement?
The main constraint comes from the matrix storing/inversion

wn+1 = wn +
C−1

n

1 + xT
n C−1

n xn
xn[yn − xT

n wn].

We can consider

wn+1 = wn + γnxn[yn − xT
n wn].

where γt is a decreasing sequence.

L. Rosasco Online Learning

Online Least Squares

The algorithm

wn+1 = wn + γnxn[yn − xT
n wn].

is recursive;
does not requires storing the data;
does not require updating the inverse, but only
vector/vector multiplication.

L. Rosasco Online Learning

Convergence of Online Least Squares (cont.)

When we consider

wn+1 = wn + γnxn[yn − xT
n wn].

we are no longer guaranteed convergence.
In other words:

how shall we choose γn?

L. Rosasco Online Learning

Batch vs Online Gradient Descent

Some ideas from the comparison with batch least squares.

wn+1 = wn + γnxn[yn − xT
n wn].

Note that
∇(yn − xT

n w)2 = xn[yn − xT
n w].

The batch gradient algorithm would be

wn+1 = wn + γn
1
t

t−1∑
t=0

xt [yt − xT
t wn].

since

∇I(w) = ∇1
t

t−1∑
t=0

(yt − xT
t w)2 =

1
t

t−1∑
t=0

xt (yt − xT
t w)

L. Rosasco Online Learning

Batch vs Online Gradient Descent

Some ideas from the comparison with batch least squares.

wn+1 = wn + γnxn[yn − xT
n wn].

Note that
∇(yn − xT

n w)2 = xn[yn − xT
n w].

The batch gradient algorithm would be

wn+1 = wn + γn
1
t

t−1∑
t=0

xt [yt − xT
t wn].

since

∇I(w) = ∇1
t

t−1∑
t=0

(yt − xT
t w)2 =

1
t

t−1∑
t=0

xt (yt − xT
t w)

L. Rosasco Online Learning

Convergence of Recursive Least Squares (cont.)

If γn decreases too fast the iterate will get stuck away from
the real solution.
In general the convergence of the online iteratatoin is
slower than the recursive least squares since we use a
simpler step-size.

Polyak Averging

If we choose γn = n−α, with α ∈ (1/2,1) and use, at each step,
the solution obtained averaging all previous solutions (namely
Polyak averaging), then convergence is ensured and is almost
the same as recursive least squares.

L. Rosasco Online Learning

Extensions

Other Loss functions
Other Kernels.

L. Rosasco Online Learning

Other Loss functions

The same ideas can be extended to other convex differentiable
loss functions, considering

wn+1 = wn + γn∇V (yn, xT
n wn).

If the loss is convex but not differentiable then more
sophisticated methods must be used, e.g. proximal methods,
subgradient methods.

L. Rosasco Online Learning

Non linear Kernels

If we use different kernels f (x) = Φ(x)T w =
∑n−1

i=0 c iK (x , xi)
then we can consider the iteration

c i
n+1 = c i

n, i = 1, . . . ,n

cn+1
n+1 = γn[yn − cT

n Kn(xn)]),

where Kn(x) = K (x , x0), . . . ,K (x , xn−1) and cn = (c1
n , . . . , cn

n).

L. Rosasco Online Learning

Non linear Kernels (cont.)

Proof

fn(x) = wT
n Φ(x) = Kn(x)T cn.

wn+1 = wn + γnΦ(xn)[yn − Φ(xn)T wn],

gives, for all x ,

fn+1(x) = fn(x) + γn[yn − Kn(xn)T cn]K (x , xn),

that can be written as

Kn+1(x)T cn+1 = Kn(x)T cn + γn[yn − Kn(xn)T cn]K (x , xn).

QED

L. Rosasco Online Learning

Non linear Kernels

c i
n+1 = c i

n, i = 1, . . . ,n

cn+1
n+1 = γn[yn − cT

n Kn(xn)]).

The above approach
is recursive;
requires storing all the data;
does not require updating the inverse, but only
vector/vector multiplication – O(n).

L. Rosasco Online Learning

