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Learning: Brains and MachinesLearning: Brains and Machines

Learning is the gateway to 
understanding the brain and to 
making intelligent machines. 

Problem of learning: 
a focus for 

o modern math
o computer algorithms
o neuroscience



Learning: much more than memory

Role of learning (theory and applications 
in many different domains) has grown substantially in CS

Plasticity and learning have a central stage in the 
neurosciences

Until now math and engineering of learning has developed 
independently of neuroscience…but it may begin to change: we 

will see the example of learning+computer vision…



Learning theory
+ algorithms

Computational
Neuroscience: 

models+experiments

ENGINEERING 
APPLICATIONS

• Bioinformatics
• Computer vision
• Computer graphics, speech     
synthesis, creating a virtual actor

How visual cortex works – and how it 
may suggest better computer vision 
systems

Learning:
math, engineering, neuroscience
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Theorems on foundations of learning:

Predictive algorithms
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ClassClass

Rules of the game: problem sets (2)
final project (min = review; max = j. paper)
grading
participation!
mathcamps? Monday late afternoon?

Web site: http://www.mit.edu/~9.520/

Slides on the Web site
Staff mailing list is 9.520@mit.edu 
Student list is 9.520-students@mit.edu
Please fill form!

http://www.mit.edu/~9.520/
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9.520 Statistical Learning Theory and Applications 9.520 Statistical Learning Theory and Applications 
Class 24: Project presentations

2:30—2:45 "Adaboosting SVMs to recover motor behavior from motor 
data", Neville Sanjana

2:45-3:00 "Review of Hierarchical Learning", Yann LeTallec

3:00—3:15 "An analytic comparison between SVMs and Bayes Point 
Machines", Ashis Kapoor

3:15-3:30 "Semi-supervised learning for tree-structured data", Charles 
Kemp

3:30—3:45 “Unsupervised Clustering with Regularized Least Square 
classifiers" - Ben Recht

3:40—3:50 "Multi-modal Human Identification."  Brian Kim

3:50—4:00 "Regret Bounds, Sequential Decision-Making and Online 
Learning", Sanmay Das
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9.520 Statistical Learning Theory and Applications 9.520 Statistical Learning Theory and Applications 
Class 25: Project presentations

2:35-2:50 "Learning card playing strategies with SVMs", David 
Craft and Timothy Chan

2:50-3:00 "Artificial Markets: Learning to trade using Support 
Vector Machines“, Adlar Kim

3:00-3:10 "Feature selection: literature review and new 
development'‘, Wei Wu

3:10—3:25 "Man vs machines: A computational study on face 
detection" Thomas Serre
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Overview of overviewOverview of overview

o  The problem of so  The problem of supervised learning: “real” math 
behind it

o   Examples of engineering applications (from our 
group)

o   Learning and the brain (example of object Learning and the brain (example of object 
recognition)recognition)



Learning from examples: goal is not to memorize 
but to generalize, eg predict.

INPUT OUTPUTf
Given Given a set of a set of ll examples (data)examples (data)

QuestionQuestion: find function : find function ff such that such that 

is a is a good predictorgood predictor of of yy for a for a futurefuture input input x (fitting the data is x (fitting the data is not not 
enough!):enough!):

yxf ˆ)( =

{ }),(...,,),(),,( 2211 ll yxyxyx



Reason for you to know theory

bf += wxx)(…

We will speak today and later about applications…

they are not simply using a black box. The best ones are about 
the right formulation of the problem (choice of representation 

(inputs, outputs), choice of examples, validate predictivity, do not 
datamine)



Notes

Two strands in learning theory:

Bayes, graphical models…

Statistical learning theory, regularization (closer to classical 
math, functional analysis+probability theory+empirical process 

theory…)



Interesting development: the theoretical foundations of Interesting development: the theoretical foundations of 
learning are becoming part of mainstream mathematicslearning are becoming part of mainstream mathematics
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y

x

= data from f

= approximation of   f
= function f

Generalization:  estimating value of function where 
there are no data (good generalization means 
predicting the function well; most important is for        
empirical or validation error to be a good proxy of the 
prediction error)

Regression:      function is real valued

Classification:   function is binary

Learning from examples: Learning from examples: predictivepredictive, multivariate , multivariate 
function estimation from sparse data function estimation from sparse data 

(not just curve fitting) (not just curve fitting) 
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ThusThus…….the key requirement (main focus of learning .the key requirement (main focus of learning 
theory) to solve the problem of learning from theory) to solve the problem of learning from 

examples: examples: 
generalizationgeneralization (and possibly even (and possibly even consistency)consistency)..

A standard way to learn from examples is ERM (empirical risk 
minimization) 

The problem does not have a predictive solution in general 
(just fitting the data does not work). Choosing an appropriate 
hypothesis space H (for instance a compact set of continuous 
functions) can guarantee generalization (how good depends on 
the problem and other parameters).
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J. S. Hadamard, 1865-1963

A problem is well-posed if its solution

exists, unique and 

is stable, eg depends continuously on the data 
(here examples) 

Learning from examples: another goal (from inverse Learning from examples: another goal (from inverse 
problems) is to ensure that problem is wellproblems) is to ensure that problem is well--posed (solution posed (solution 

exists stable)exists stable)
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ThusThus…….two key requirements to solve the problem .two key requirements to solve the problem 
of learning from examples: of learning from examples: 

wellwell--posednessposedness andand generalizationgeneralization

Consider the standard learning algorithm, i.e. ERM 

The main focus of learning theory is predictivity of the 
solution eg generalization. The problem is in addition ill-posed. 
It was known that by choosing an appropriate hypothesis space 
H predictivity is ensured. It was also known that appropriate H
provide well-posedness. 

A couple of years ago it was shown that generalization and 
well-posedness are equivalent, eg one implies the other. 

Thus a stable solution is  predictive and (for 
ERM) also  viceversa.
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More later…..



Learning theory and natural sciences

Conditions for generalization in learning theory

have deep, almost philosophical, implications:

they may be regarded as conditions that guarantee a 
theory to be predictive (that is scientific) 



We have used a simple  algorithm 
-- that ensures generalization --

in most of our applications…

For a review, see Poggio and Smale, The Mathematics of Learning, 
Notices of the AMS, 2003

Equation includes Regularization Networks (special cases 
are splines, Radial Basis Functions and Support Vector 
Machines). Function is nonlinear and general approximator…
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Classical framework but with more general Classical framework but with more general 
loss functionloss function

Girosi, Caprile, Poggio, 1990

The algorithm uses a The algorithm uses a quite generalquite general space of functions or space of functions or ““hypotheseshypotheses”” : : 
RKHSsRKHSs.. n of the classical framework can provide a better measure 

of “loss” (for instance for classification)…
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…and can be “written” as 
the same type of  network…where the 
value of K corresponds to the “activity”
of the “unit” and the     correspond to 
(synaptic) “weights”

K K

+

f

K

Another remark: equivalence to networks

bKcf i
l

i i +=∑ ),()( xxx 1x

dx ic
ic

Many different V  lead to the same solution…
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Theory summaryTheory summary

In the course we will introduce 

• Generalization (predictivity of the solution)
• Stability (well-posedness) 
• RKHSs hypotheses spaces
• Regularization techniques leading to RN and SVMs
• Manifold Regularization (semisupervised learning)
• Unsupervised learning
• Generalization bounds based on stability
• Alternative classical bounds (VC and Vgamma dimensions)

• Related topics

• Applications
S
y
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Syllabus
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Overview of overviewOverview of overview

o  Supervised learning: real matho  Supervised learning: real math

o  Examples of recent and ongoing ino  Examples of recent and ongoing in--house engineering house engineering 
on applicationson applications

o  Learning and the braino  Learning and the brain
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Learning from Examples: Learning from Examples: engineering engineering 
applicationsapplications

Bioinformatics 
Artificial Markets
Object categorization
Object identification 
Image analysis
Graphics
Text Classification
…..

INPUTINPUT OUTPUTOUTPUT
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Learning from examples paradigm

Examples

Prediction  Statistical Learning 
Algorithm

Prediction

New sample

Bioinformatics application: predicting type of 
cancer from DNA chips signals
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Bioinformatics application: predicting type of 
cancer from DNA chips

New feature selection SVM:

Only 38 training examples, 7100 features

AML vs ALL: 40 genes 34/34 correct, 0 rejects.
5 genes 31/31 correct, 3 rejects of which 1 is an error.

Pomeroy, S.L., P. Tamayo, M. Gaasenbeek, L.M. Sturia, M. Angelo, M.E. 
McLaughlin, J.Y.H. Kim, L.C. Goumnerova, P.M. Black, C. Lau, J.C. Allen, D. 
Zagzag, M.M. Olson, T. Curran, C. Wetmore, J.A. Biegel, T. Poggio, S. 
Mukherjee, R. Rifkin, A. Califano, G. Stolovitzky, D.N. Louis, J.P. Mesirov, E.S. 
Lander and T.R. Golub. Prediction of Central Nervous System Embryonal
Tumour Outcome Based on Gene Expression, Nature, 2002. 
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Learning from Examples: Learning from Examples: engineering engineering 
applicationsapplications

Bioinformatics 
Artificial Markets
Object categorization
Object identification
Image analysis
Graphics
Text Classification
…..

INPUTINPUT OUTPUTOUTPUT
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Face identification: exampleFace identification: example

An old viewAn old view--based system: 15 viewsbased system: 15 views

Performance: 98% on 68 person database
Beymer, 1995
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Learning from Examples: Learning from Examples: engineering engineering 
applicationsapplications

Bioinformatics 
Artificial Markets
Object categorization
Object identification 
Image analysis
Graphics
Text Classification
…..

INPUTINPUT OUTPUTOUTPUT
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System Architecture 

Data Base

QP Solver

TRAININGPreprocessing with 
overcomplete

dictionary of Haar
wavelets 

SVM Classifier

Scanning in x,y and 
scale

Sung, Poggio 1994; Papageorgiou and Poggio, 1998
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People classification/detection: training People classification/detection: training 
the systemthe system

Representation: overcomplete dictionary of Haar wavelets;  high
dimensional feature space (>1300 features)

. . . . . .

pedestrian detection system 

1848 patterns 7189 patterns

Core learning algorithm:
Support Vector Machine
classifier



Trainable System for  Object Detection: 
Pedestrian detection - Results

Papageorgiou and Poggio, 1998



The system was tested in a test car 
(Mercedes)



System installed in 
experimental Mercedes

A fast version, integrated 
with a real-time obstacle 

detection system

MPEG

Constantine Papageorgiou
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People classification/detection: training the People classification/detection: training the 
systemsystem

Representation: overcomplete dictionary of Haar wavelets;  high
dimensional feature space (>1300 features)

. . . . . .

pedestrian detection system 

1848 patterns 7189 patterns

Core learning algorithm:
Support Vector Machine
classifier
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Face classification/detection: training the Face classification/detection: training the 
systemsystem

Representation: grey levels (normalized) or overcomplete
dictionary of Haar wavelets

. . . . . .

face detection system 

Core learning algorithm:
Support Vector Machine
classifier
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Face identification: training the systemFace identification: training the system

Representation: grey levels (normalized) or overcomplete
dictionary of Haar wavelets

. . . . . .

face identification system 

Core learning algorithm:
Support Vector Machine
classifier



Computer vision: new StreetScenes
Project

Learning Algorithms for Scene Understanding

Recognition of 
10 Object 
Categories

Automatic 
Learning of object 
specific features 

or parts

Construction of 
the StreetScenes 

Database

Automatic Scene 
Description

Project Timeline

Lior Wolf, Stan Bileschi, …
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Learning from Examples: ApplicationsLearning from Examples: Applications

Object identification
Object categorization
Image analysis
Graphics
Finance
Bioinformatics
…

INPUTINPUT OUTPUTOUTPUT



9.520, spring 2006

Image AnalysisImage Analysis

IMAGE ANALYSIS: OBJECT RECOGNITION AND POSE IMAGE ANALYSIS: OBJECT RECOGNITION AND POSE 
ESTIMATIONESTIMATION

⇒ Bear (0° view)

⇒ Bear (45° view)
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Computer vision: analysis of facial expressions

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85

0

2

4

6

8

10

12

The main goal is to estimate basic facial parameters, e.g. 
degree of mouth openness, through learning. One of the main 

applications is video-speech fusion to improve speech 
recognition systems.

Kumar, Poggio, 2001



CBCL MIT
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Learning from Examples: engineering 
applications

Bioinformatics 
Artificial Markets
Object categorization
Object identification 
Image analysis
Image synthesis, eg Graphics
Text Classification
…..

INPUTINPUT OUTPUTOUTPUT
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Image SynthesisImage Synthesis

Metaphor for UNCONVENTIONAL GRAPHICSMetaphor for UNCONVENTIONAL GRAPHICS

Θ = 0° view ⇒

Θ = 45° view ⇒
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Blanz and Vetter,
MPI
SigGraph ‘99

Reconstructed 3D Face Models from 1 image
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Blanz and Vetter,
MPI
SigGraph ‘99

Reconstructed 3D Face Models from 1 Reconstructed 3D Face Models from 1 
imageimage



V. Blanz, C. Basso, 
T. Poggio

and 
T. Vetter, 2003



Extending the same basic learning techniques (in 2D): 
Trainable Videorealistic Face Animation

(voice is real, video is synthetic)

Ezzat, Geiger, Poggio, SigGraph 2002




Trainable Videorealistic Face Animation

/B/ /AE/ /AE/ /JH//SIL/ /B/ /AE/ /JH/ /JH//SIL/

Phone Stream

Trajectory 
Synthesis

MMM

Phonetic Models

Image Prototypes

1. Learning

System learns from 4 mins
of video the face appearance 
(Morphable Model) and the 
speech dynamics of the 
person

Tony Ezzat,Geiger, Poggio, SigGraph 2002

2. Run Time

For any speech input the system 
provides as output a synthetic 
video stream



A Turing test: what is real and what is 
synthetic?

We  assessed the realism of the talking face  with 
psychophysical experiments.

Data suggest that the system passes a visual  
version of the Turing test.
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Overview of overviewOverview of overview

o  Supervised learning: the problem and how to frame o  Supervised learning: the problem and how to frame 
it within classical mathit within classical math

o  Examples of ino  Examples of in--house applicationshouse applications

o  Learning and the braino  Learning and the brain



Learning to recognize objects and the ventral 
stream in visual cortex



Human Brain
1011… 1012 neurons
1014 + synapses

Neuron
Fine dendrites : 0.1 µ diameter
Lipid bylayer membrane : 5 nm thick
Specific proteins : pumps, channels, receptors, enzymes
Synaptic packet of transmitter opens 2 x 103 channels 

(with 104 AcH molecules)
Each channel: conductance g = 10-11 mho
Fundamental time length : 1 msec

Some numbers



A theory 
of the ventral stream of visual cortex

Thomas Serre, Minjoon Kouh,  Charles Cadieu, Ulf Knoblich
and Tomaso Poggio

The McGovern Institute for Brain Research, 
Department of Brain Sciences 

Massachusetts Institute of Technology



The Ventral Visual Stream: From V1 to IT

modified from Ungerleider and Haxby, 1994

Hubel & Wiesel, 1959 Desimone, 1991
Desimone, 1991



Summary of “basic facts”
Accumulated evidence points to three (mostly accepted) 
properties of the ventral visual stream architecture:

• Hierarchical build-up of invariances (first to 
translation and scale, then to viewpoint etc.) , size of 
the receptive fields and complexity of preferred 
stimuli

• Basic feed-forward processing of information (for 
“immediate” recognition tasks)

• Learning of  an individual object generalizes to scale 
and position



Mapping the ventral stream into a model

Serre, Kouh, Cadieu, Knoblich, Poggio, 2005; 
Riesenhuber et al, Nat. Neuro, 1999,2000 …



The  model
Claims to interpret or predict several existing data in microcircuits and system 
physiology,  and also in cognitive science:

• What some complex cells in V1 and V4  do and why: MAX…

• View-tuning of IT cells (Logothetis)
• Response to pseudomirror views
• Effect of scrambling 
• Multiple objects
• Robustness/sensitivity to clutter
• K. Tanaka’s simplification procedure
• Categorization tasks (cats vs dogs)
• Invariance to translation, scale etc…
• Read-out data…

• Gender classification
• Face inversion effect : experience, viewpoint, other-race, configural
vs. featural representation

• Binding problem, no need for oscillations…
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Category 
boundary

Prototypes
100% Cat

80% Cat
Morphs

60% Cat
Morphs

60% Dog
Morphs 80% Dog

Morphs
Prototypes
100% Dog

Neural Correlate of Categorization (NCC)

Define categories in morph space
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Categorization task

.

.

.

.

.

Fixation
Sample

Delay

Test
(Nonmatch)

Delay

(Match)

Test
(Match)

600 ms.
1000 
ms.

500 ms.

.

.

After training, record from neurons in IT & PFC

Train monkey on categorization task
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Dog 100% 
Dog 80% 
Dog 60% 

ChoiceSample Delay 

Cat 100% 

Fixation 

Cat 60% 
Cat 80% 

Single cell example: a “categorical” PFC neuron that 
responds more strongly to DOGS than CATS

D. Freedman + E. Miller + M. 
Riesenhuber+T. Poggio (Science, 
2001)





The model fits many physiological data, 
predicts several new ones…

recently it provided a surprise (for us)…



…when we compared its performance  with 
machine vision…



Sample Results on the CalTech 101-object dataset



The model performs at the level of the best 
computer vision systems



…and another surprise…

… was the comparison with human performance
(Thomas Serre with Aude Oliva) 

on rapid categorization of complex natural images



Experiment: rapid (to avoid backprojections) 
animal detection in natural images

Animal present
or not ?

30 msec

20 msec

Image
Interval 
Image-Mask

Mask
1/f noise

80 msec

[Thorpe et al, 1996; Van Rullen & Koch, 2003; 
Oliva & Torralba, in press]



Targets and distractors

[Serre, Oliva & Poggio, in prep]



Human: 80% correct
vs.

Model: 82% correct

Humans achieve model-level performance

Model results obtained without tuning a single parameter!

[Serre, Oliva & Poggio, in prep]



Freedman, Science, 2002
Logothetis et al., Cur. Bio., 1995
Gawne et al., J. Neuro., 2002
Lampl et al.,J. Neuro, 2004.

Theory supported by data in V1, V4, IT; works as well as the best computer vision; mimics human 
performance



A challenge for learning theory: 

an unusual, hierarchical architecture
with unsupervised and supervised learning

and learning of invariances…

We will see later why this is unusual and interesting for learning 
theory!
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